【題目】已知a,b為常數,且a≠0,f(x)=ax2+bx,f(2)=0.
(Ⅰ)若方程f(x)﹣x=0有唯一實數根,求函數f(x)的解析式;
(Ⅱ)當a=1時,求函數f(x)在區間[﹣1,2]上的最大值與最小值;
(Ⅲ)當x≥2時,不等式f(x)≥2﹣a恒成立,求實數a的取值范圍.
【答案】解:∵f(2)=0,∴2a+b=0,∴f(x)=a(x2﹣2x)
( I)方程f(x)﹣x=0有唯一實數根,即方程ax2﹣(2a+1)x=0有唯一解,∴(2a+1)2=0,解得 ∴
(II)∵a=1∴f(x)=x2﹣2x,x∈[﹣1,2]若f(x)max=f(﹣1)=3若f(x)min=f(1)=﹣1
(Ⅲ)解法一、當x≥2時,不等式f(x)≥2﹣a恒成立,即: 在區間[2,+∞)上恒成立,
設 ,顯然函數g(x)在區間[2,+∞)上是減函數,gmax(x)=g(2)=2當且僅當a≥gmax(x)時,不等式f(x)≥2﹣a2在區間[2,+∞)上恒成立,因此a≥2
解法二、因為 當x≥2時,不等式f(x)≥2﹣a恒成立,所以 x≥2 時,f(x)的最小值≥2﹣a
當a<0時,f(x)=a(x2﹣2x)在[2,+∞)單調遞減,f(x)≤0恒成立而2﹣a>0所以a<0時不符合題意.
當a>0時,f(x)=a(x2﹣2x)在[2,+∞)單調遞增,f(x)的最小值為f(2)=0所以 0≥2﹣a,即a≥2即可
綜上所述,a≥2
【解析】(Ⅰ)由二次函數根的情況可得當方程ax2﹣(2a+1)x=0有唯一解時即可得a的值求出函數解析式。(II)根據二次函數在指定區間[﹣1,2]上的最值可得。(Ⅲ)整理不等式f(x)≥2﹣a可得, a ≥
,由題意根據二次函數的最值可得。
【考點精析】關于本題考查的二次函數在閉區間上的最值,需要了解當時,當
時,
;當
時在
上遞減,當
時,
才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】將函數y=sin(x﹣ )的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向左平移
個單位,得到的圖象對應的解析式是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AD⊥平面PAB,△PAB是正三角形,AD=AB=2,BC=1,E是線段AB的中點
(1)求證:平面PDE⊥平面ABCD;
(2)設直線PC與平面PDE所成角為θ,求cosθ
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數 的圖象,只需將函數y=sin2x的圖象上每一點( )
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面是菱形,PA⊥面ABCD,PA=AD=2,∠ABC=60°,E為PD中點.
(1)求證:PB∥平面ACE;
(2)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com