【題目】已知直線,
.
(1)當時,直線
過
與
的交點,且它在兩坐標軸上的截距相反,求直線
的方程;
(2)若坐標原點到直線
的距離為
,判斷
與
的位置關系.
科目:高中數學 來源: 題型:
【題目】如圖所示,某公園內有兩條道路,
,現計劃在
上選擇一點
,新建道路
,并把
所在的區域改造成綠化區域.已知
,
.
(1)若綠化區域的面積為1
,求道路
的長度;
(2)若綠化區域改造成本為10萬元/
,新建道路
成本為10萬元/
.設
(
),當
為何值時,該計劃所需總費用最?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(大小忽略不計,取
),則落在小正方形(陰影)內的米粒數大約為( )
A. 134 B. 67 C. 200 D. 250
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓關于直線
對稱,圓心C在第二象限,半徑為
.
(1)求圓C的方程.
(2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,寫出滿足條件的直線條數(不要求過程);若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓與
軸交于
、
兩點(點
在點
的左側),
、
是分別過
、
點的圓
的切線,過此圓上的另一個點
(
點是圓上任一不與
、
重合的動點)作此圓的切線,分別交
、
于
、
兩點,且
、
兩直線交于點
.
()設切點
坐標為
,求證:切線
的方程為
.
()設點
坐標為
,試寫出
與
的關系表達式(寫出詳細推理與計算過程).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形
所在的平面,
為
的中點,
,四邊形
為矩形,線段
交
于點
.
(1)求證:平面
;
(2)求二面角的正弦值;
(3)在線段上是否存在一點
,使得
與平面
所成角的大小為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的兩個焦點
,
,設
,
分別是橢圓
的上、下頂點,且四邊形
的面積為
,其內切圓周長為
.
(1)求橢圓的方程;
(2)當時,
,
為橢圓
上的動點,且
,試問:直線
是否恒過一定點?若是,求出此定點坐標,若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com