【題目】如圖,有一塊矩形空地,要在這塊空地上辟一個內接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設AE=x,綠地面積為y.
(1)寫出y關于x的函數關系式,并指出這個函數的定義域.
(2)當AE為何值時,綠地面積最大?
【答案】
(1)解:S△AEH=S△CFG= x2,\
S△BEF=S△DGH= (a﹣x)(2﹣x).\
∴y=SABCD﹣2S△AEH﹣2S△BEF=2a﹣x2﹣(a﹣x)(2﹣x)=﹣2x2+(a+2)x.\
由 ,得0<x≤2\
∴y=﹣2x2+(a+2)x,0<x≤2
(2)解:當 ,即a<6時,則x=
時,y取最大值
.\
當 ≥2,即a≥6時,y=﹣2x2+(a+2)x,在(0,2]上是增函數,
則x=2時,y取最大值2a﹣4\
綜上所述:當a<6時,AE= 時,綠地面積取最大值
;
當a≥6時,AE=2時,綠地面積取最大值2a﹣4
【解析】(1)先求得四邊形ABCD,△AHE的面積,再分割法求得四邊形EFGH的面積,即建立y關于x的函數關系式;(2)由(1)知y是關于x的二次函數,用二次函數求最值的方法求解.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知中心在原點,離心率為
的橢圓
的一個焦點為圓
:
的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓
上一點,過
作兩條斜率之積為
的直線
,
,當直線
,
都與圓
相切時,求
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2﹣2|x|﹣1(﹣3≤x≤3),
(1)畫出這個函數的圖象;
(2)指出函數f(x)的單調區間,并說明在各個單調區間上f(x)是增函數還是減函數;
(3)求函數的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)滿足:對任意的x1 , x2∈R(x1≠x2),有 <0,則( )
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017湖南長沙二!已知橢圓(
)的離心率為
,
分別是它的左、右焦點,且存在直線
,使
關于
的對稱點恰好是圓
(
)的一條直線的兩個端點.
(1)求橢圓的方程;
(2)設直線與拋物線
(
)相交于
兩點,射線
,
與橢圓
分別相交于點
,試探究:是否存在數集
,當且僅當
時,總存在
,使點
在以線段
為直徑的圓內?若存在,求出數集
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017福建三明5月質檢】已知橢圓的右焦點
,橢圓
的左,右頂點分別為
.過點
的直線
與橢圓交于
兩點,且
的面積是
的面積的3倍.
(Ⅰ)求橢圓的方程;
(Ⅱ)若與
軸垂直,
是橢圓
上位于直線
兩側的動點,且滿足
,試問直線
的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的中心在坐標原點,離心率 ,且其中一個焦點與拋物線
的焦點重合.
(1)求橢圓C的方程;
(2)過點S( ,0)的動直線l交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點T,使得無論l如何轉動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com