【題目】在平面直角坐標系中
設傾斜角為
的直線
的參數方程為
為參數).在以坐標原點
為極點,以
軸正半軸為極軸建立的極坐標系中,曲線
的極坐標方程為
,直線
與曲線
相交于不同的兩點
.
(1)若,求直線
的普通方程和曲線
的直角坐標方程;
(2)若為
與
的等比中項,其中
,求直線
的斜率.
科目:高中數學 來源: 題型:
【題目】實驗杯足球賽采用七人制淘汰賽規則,某場比賽中一班與二班在常規時間內戰平,直接進入點球決勝環節,在點球決勝環節中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負,則需要進行一對一的點球決勝,即雙方各派處一名隊員罰點球,直至分出勝負;在前三輪罰球中,若某一時刻勝負已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學無需出場).由于一班同學平時踢球熱情較高,每位隊員罰點球的命中率都能達到0.8,而二班隊員的點球命中串只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.
(1)定義事件為“一班第三位同學沒能出場罰球”,求事件
發生的概率;
(2)若兩隊在前三輪點球結束后打平,則進入一對一點球決勝,一對一球決勝由沒有在之前點球大戰中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某對隊員射入點球且另一隊員未能射入,則比賽結束;若兩名隊員均射入或者均射失點球,則進行下一輪比賽. 若直至雙方場上每名隊員都已經出場罰球,則比賽亦結束,雙方通過抽簽決定勝負,本場比賽中若已知雙方在點球大戰,以隨機變量記錄雙方進行一對一點球決勝的輪數,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
經過點
,傾斜角為
.以坐標原點
為極點,以
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)寫出直線的參數方程和曲線
的直角坐標方程;
(2)設直線與曲線
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4—4:坐標系與參數方程]
在平面直角坐標系中,曲線
的參數方程為
(
為參數,
),以坐標原點
為極點,
軸的非負半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)設是曲線
上的一個動瞇,當
時,求點
到直線
的距離的最小值;
(2)若曲線上所有的點都在直線
的右下方,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國文化中有很多東西喜歡9或9的倍數.如:九連環、九陰白骨爪、降龍十八掌()、三十六計(
)、孫悟空七十二變(
)、八十一難(
)等.若一個三位數的各位數字之和為9,如207,126,則這樣的三位數共有________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
離心率
.
(Ⅰ)求橢圓的方程;
(Ⅱ)經過橢圓左焦點的直線(不經過點
且不與
軸重合)與橢圓交于
兩點,與直線
:
交于點
,記直線
的斜率分別為
.則是否存在常數
,使得向量
共線?若存在求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了解學生對食堂用餐的滿意度,從全校在食堂用餐的3000名學生中,隨機抽取100名學生對食堂用餐的滿意度進行評分.根據學生對食堂用餐滿意度的評分,得到如圖所示的率分布直方圖,
(1)求頻率分布直方圖中的值
(2)規定:學生對食堂用餐滿意度的評分不低于80分為“滿意”,試估計該校在食堂用餐的3000名學生中“滿意”的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知2件次品和3件正品混放在一起,現需要通過檢測將其區分,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.
(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(2)已知每檢測一件產品需要費用100元,設X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查居民對城市共享單車的滿意度,隨機選取了100人進行問卷調查,并將問卷中的100人根據其滿意度評分值按照分為5組,得到號如圖所示的頻率分布直方圖.
(Ⅰ)求滿意度分值不低于70分的人數.
(Ⅱ)已知滿意度分值在內的男性與女性的比為3:4,為提高共享單車的滿意度,現從滿意度分值在
的人中隨機抽取2人進行座談,求這2人中只有一位男性的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com