精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系設傾斜角為的直線的參數方程為為參數).在以坐標原點為極點,以軸正半軸為極軸建立的極坐標系中,曲線的極坐標方程為,直線與曲線相交于不同的兩點

(1)若,求直線的普通方程和曲線的直角坐標方程;

(2)若的等比中項,其中,求直線的斜率.

【答案】(1),;(2).

【解析】

1)根據直線方程的點斜式可得直線的普通方程,根據互化公式可得曲線的直角坐標方程;(2)根據參數的幾何意義以及等比中項列式可解得.

(1)因為,所以直線的參數方程為為參數).

可得直線的普通方程為.

因為曲線的極坐標方程可化為,

所以曲線的直角坐標方程為.

(2)設直線上兩點對應的參數分別為,,

代入曲線的直角坐標方程可得,

化簡得,

因為,

所以,解得.

因為

,可知,解得,

所以直線的斜率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】實驗杯足球賽采用七人制淘汰賽規則,某場比賽中一班與二班在常規時間內戰平,直接進入點球決勝環節,在點球決勝環節中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負,則需要進行一對一的點球決勝,即雙方各派處一名隊員罰點球,直至分出勝負;在前三輪罰球中,若某一時刻勝負已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學無需出場).由于一班同學平時踢球熱情較高,每位隊員罰點球的命中率都能達到0.8,而二班隊員的點球命中串只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.

(1)定義事件為“一班第三位同學沒能出場罰球”,求事件發生的概率;

(2)若兩隊在前三輪點球結束后打平,則進入一對一點球決勝,一對一球決勝由沒有在之前點球大戰中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某對隊員射入點球且另一隊員未能射入,則比賽結束;若兩名隊員均射入或者均射失點球,則進行下一輪比賽. 若直至雙方場上每名隊員都已經出場罰球,則比賽亦結束,雙方通過抽簽決定勝負,本場比賽中若已知雙方在點球大戰,以隨機變量記錄雙方進行一對一點球決勝的輪數,求的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,直線經過點,傾斜角為.以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)寫出直線的參數方程和曲線的直角坐標方程;

(2)設直線與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4—4:坐標系與參數方程]

在平面直角坐標系中,曲線的參數方程為為參數,),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,直線的極坐標方程為.

(1)設是曲線上的一個動瞇,當時,求點到直線的距離的最小值;

(2)若曲線上所有的點都在直線的右下方,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國文化中有很多東西喜歡99的倍數.如:九連環、九陰白骨爪、降龍十八掌()、三十六計()、孫悟空七十二變()、八十一難()等.若一個三位數的各位數字之和為9,如207,126,則這樣的三位數共有________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓經過點離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)經過橢圓左焦點的直線(不經過點且不與軸重合)與橢圓交于兩點,與直線:交于點,記直線的斜率分別為.則是否存在常數,使得向量 共線?若存在求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校為了解學生對食堂用餐的滿意度,從全校在食堂用餐的3000名學生中,隨機抽取100名學生對食堂用餐的滿意度進行評分.根據學生對食堂用餐滿意度的評分,得到如圖所示的率分布直方圖,

1)求頻率分布直方圖中的值

2)規定:學生對食堂用餐滿意度的評分不低于80分為滿意,試估計該校在食堂用餐的3000名學生中滿意的人數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知2件次品和3件正品混放在一起,現需要通過檢測將其區分,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.

1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2)已知每檢測一件產品需要費用100元,設X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查居民對城市共享單車的滿意度,隨機選取了100人進行問卷調查,并將問卷中的100人根據其滿意度評分值按照分為5組,得到號如圖所示的頻率分布直方圖.

(Ⅰ)求滿意度分值不低于70分的人數.

(Ⅱ)已知滿意度分值在內的男性與女性的比為3:4,為提高共享單車的滿意度,現從滿意度分值在的人中隨機抽取2人進行座談,求這2人中只有一位男性的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视