精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,單位圓上存在兩點,滿足均與軸垂直,設的面積之和記為

,求的值;

若對任意的,存在,使得成立,且實數使得數列為遞增數列,其中求實數的取值范圍.

【答案】(1)(2)

【解析】

(1)運用三角形的面積公式和三角函數的和差公式,以及特殊角的函數值,可得所求角;

(2)由正弦函數的值域可得的最大值,再由基本不等式可得的最大值,可得的范圍,再由數列的單調性,討論的范圍,即可得到的取值范圍.

依題意,可得

,

,得,

,所以

因為,所以,所以,

時,,

(當且僅當時,等號成立)

又因為對任意,存在,使得成立,

所以,即,解得,

因為數列為遞增數列,且

所以,從而,

,所以,

從而,

,

①當時,,從而,

此時同號,

,即,

②當時,由于趨向于正無窮大時,趨向于相等,從而趨向于相等,即存在正整數,使,從而,

此時異號,與數列為遞增數列矛盾,

綜上,實數的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點,.

(1)證明:平面;

(2)設點是線段的中點,求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(Ⅰ)求函數的單調區間;

(Ⅱ)當時,,成立,求的取值范圍;

(Ⅲ)設曲線,點,為該曲線上不同的兩點.求證:當時,直線的斜率大于-1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

(1)求函數的最小正周期和對稱軸方程;

(2)若,求的值域.

【答案】(1)對稱軸為,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和輔助角公式將函數解析式進行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數的性質即可得到值域.

(1)

,則

的對稱軸為,最小正周期;

(2)當時,,

因為單調遞增,在單調遞減,

取最大值,在取最小值,

所以,

所以

【點睛】

本題考查正弦函數圖像的性質,考查周期性,對稱性,函數值域的求法,考查二倍角公式以及輔助角公式的應用,屬于基礎題.

型】解答
束】
21

【題目】已知等比數列的前項和為,公比,

(1)求等比數列的通項公式;

(2)設,求的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把函數y=cos2x+1的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),然后向左平移1個單位長度,再向下平移1個單位長度,得到的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某村電費收取有以下兩種方案供農戶選擇:

方案一:每戶每月收取管理費2元,月用電量不超過30度時,每度0.5元;超過30度時,超過部分按每度0.6元收;

方案二:不收管理費,每度0.58元.

1)求方案一收費(元)與用電量(度)間的函數關系;

2)老王家九月份按方案一交費35元,問老王家該月用電多少度?

3)老王家該月用電量在什么范圍內,選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)對任意x,yR,總有f(x)f(y)f(xy),且當x>0時,f(x)<0,f(1)=-.

(1)求證:f(x)R上的單調減函數.

(2)f(x)[3,3]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(2x+ )+sin(2x﹣ )+2cos2x﹣1,x∈R.
(1)求函數f(x)的最小正周期;
(2)求函數f(x)在區間[ ]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若在區間[23]上有最大值1.

1)求的值;

2)求函數在區間上的值域;

3)若在[2,4]上單調,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视