【題目】如圖, 是棱形,
與
相交于點
,平面
平面
,且
是直角梯形,
.
(1)求證: ;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)由菱形的性質可得,由線面垂直的性質可得
平面
,再由線面垂直的性質可得結論;(2)直角梯形
中,由
得
平面
,取
的中點
,以
為坐標原點,以
為
軸,
為
軸,
為
軸,建立空間直角坐標系,分別求出平面
的法向量與平面
的法向量,利用空間向量夾角余弦公式可得二面角
的余弦值.
試題解析:(1)證明:在棱形中,可得
,
因為平面平面
,且交線為
,
所以平面
,
因為平面
,所以
.
(2)直角梯形中,由
,得
平面
.
取的中點
,以
為坐標原點,以
為
軸,
為
軸,
為
軸,建立空間直角坐標系,則
.
所以.
設平面的法向量
,
由,可取
由.
設平面的法向量為
,
同上得,可取.
則,
即二面角的余弦值為
.
【方法點晴】本題主要考查線面垂直判定與性質以及利用空間向量求二面角的大小,屬于難題. 空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.
科目:高中數學 來源: 題型:
【題目】用0,1,2,3,4這五個數字組成無重復數字的自然數.
(Ⅰ)在組成的三位數中,求所有偶數的個數;
(Ⅱ)在組成的三位數中,如果十位上的數字比百位上的數字和個位上的數字都小,則稱這個數為“凹數”,如301,423等都是“凹數”,試求“凹數”的個數;
(Ⅲ)在組成的五位數中,求恰有一個偶數數字夾在兩個奇數數字之間的自然數的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
已知曲線的參數方程為
(
為參數),以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求曲線的直角坐標方程及曲線
上的動點
到坐標原點
的距離
的最大值;
(Ⅱ)若曲線與曲線
相交于
,
兩點,且與
軸相交于點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個頂點為A(2,0),離心率為
.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列結論中不正確的個數是( )
①一個人打靶時連續射擊兩次,則事件“至少有一次中靶”與事件“至多有一次中靶”是對立事件;
②“”是“
”的充分不必要條件;
③若事件與事件
滿足條件:
,則事件
與事件
是對立事件;
④把紅、橙、黃、綠4張紙牌隨機分給甲、乙、丙、丁4人,每人分得1張,則事件“甲分得紅牌”與事件“乙分得紅牌”是互斥事件.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線l:y=2x﹣1與雙曲線(
,
)相交于A、B兩個不
同的點,且(O為原點).
(1)判斷是否為定值,并說明理由;
(2)當雙曲線離心率時,求雙曲線實軸長的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com