【題目】如圖,在四棱錐中,底面
是邊長為
的正方形,側棱
底面
,且側棱
的長是
,點
分別是
的中點.
(Ⅰ)證明: 平面
;
(Ⅱ)求三棱錐的體積.
科目:高中數學 來源: 題型:
【題目】一條光線經過P(2,3)點,射在直線l:x+y+1=0上,反射后穿過點Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C: ,點
在x軸的正半軸上,過點M的直線
與拋物線C相交于A,B兩點,O為坐標原點.
(1)若,且直線
的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點M,使得不論直線繞點M如何轉動,
恒為定值?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓中心在坐標原點,焦點在坐標軸上,且經過
三點.
(1)求橢圓的方程;
(2)在直線上任取一點
,連接
,分別與橢圓
交于
兩點,判斷直線
是否過定點?若是,求出該定點.若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是直線
(
)上一動點,
、
是圓
:
的兩條切線,
、
為切點,
為圓心,若四邊形
面積的最小值是
,則
的值是( )
A. B.
C.
D.
【答案】D
【解析】∵圓的方程為: ,
∴圓心C(0,1),半徑r=1.
根據題意,若四邊形面積最小,當圓心與點P的距離最小時,即距離為圓心到直線l的距離最小時,切線長PA,PB最小。切線長為4,
∴,
∴圓心到直線l的距離為.
∵直線(
),
∴,解得
,由
所求直線的斜率為
故選D.
【題型】單選題
【結束】
19
【題目】拋物線的焦點為
,準線為
,經過
且斜率為
的直線與拋物線在
軸上方的部分相交于點
,
,垂足為
,則
的面積是 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018江西南康中學、于都中學上學期第四次聯考】橢圓上動點
到兩個焦點的距離之和為4,且到右焦點距離的最大值為
.
(I)求橢圓的方程;
(II)設點為橢圓的上頂點,若直線
與橢圓
交于兩點
(
不是上下頂點)
.試問:直線
是否經過某一定點,若是,求出該定點的坐標;若不是,請說明理由;
(III)在(II)的條件下,求面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com