精英家教網 > 高中數學 > 題目詳情

【題目】已知某運動員每次投籃命中的概率是40%.現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生09之間取整數值的隨機數,指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下10組隨機數:907 966 191 925 271 431 932 458 569 683.

據此估計,該運動員三次投籃恰有兩次命中的概率為

A. B. C. D.

【答案】C

【解析】

由題意知模擬三次投籃的結果,經隨機模擬產生了10組隨機數,在10組隨機數中表示三次投籃恰有兩次命中的有可以通過列舉得到共3組隨機數,根據概率公式,得到結果.

由題意知模擬三次投籃的結果,經隨機模擬產生了10組隨機數,在10組隨機數中表示三次投籃恰有兩次命中的有:191、932、271、共3組隨機數,

故所求概率為:.

故答案為:C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于,若數列滿足,則稱這個數列為“K數列”.

(Ⅰ)已知數列:1,m+1m2是“K數列”,求實數的取值范圍;

(Ⅱ)是否存在首項為-1的等差數列為“K數列”,且其前n項和滿足

?若存在,求出的通項公式;若不存在,請說明理由;

(Ⅲ)已知各項均為正整數的等比數列是“K數列”,數列不是“K數列”,若,試判斷數列是否為“K數列”,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知點P在正方體ABCD-A′B′C′D′的對角線BD′,PDA=60°.

(1)DPCC′所成角的大小.

(2)DP與平面AA′D′D所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,D,E,F分別是邊,中點,下列說法正確的是(

A.

B.

C.,則的投影向量

D.若點P是線段上的動點,且滿足,則的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,且,其對角線、交于點, 、是棱、上的中點.

(1)求證:面

(2)若面底面, , , ,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.

如圖,在陽馬中,側棱底面,且,過棱的中點,作于點,連接

)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫

出結論);若不是,說明理由;

)若面與面所成二面角的大小為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

(1)討論的單調區間;

(2)若,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若直線軸,軸的交點分別為,圓以線段為直徑.

(Ⅰ)求圓的標準方程;

(Ⅱ)若直線過點,與圓交于點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為積極響應國家“陽光體育運動”的號召,某學校在了解到學生的實際運動情況后,發起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議。為調查該校學生每周平均體育運動時間的情況,從高一高二基礎年級與高三三個年級學生中按照4:3:3的比例分層抽樣,收集300位學生每周平均體育運動時間的樣本數據(單位:小時),得到如圖所示的頻率分布直方圖。

(1)據圖估計該校學生每周平均體育運動時間.并估計高一年級每周平均體育運動時間不足4小時的人數;

(2)規定每周平均體育運動時間不少于6小時記為“優秀”,否則為“非優秀”,在樣本數據中,有30位高三學生的每周平均體育運動時間不少于6小時,請完成下列列聯表,并判斷是否有99%的把握認為“該校學生的每周平均體育運動時間是否“優秀”與年級有關”.

基礎年級

高三

合計

優秀

非優秀

合計

300

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:K2,na+b+c+d

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视