【題目】已知某運動員每次投籃命中的概率是40%.現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下10組隨機數:907 966 191 925 271 431 932 458 569 683.
據此估計,該運動員三次投籃恰有兩次命中的概率為
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】對于,若數列
滿足
,則稱這個數列為“K數列”.
(Ⅰ)已知數列:1,m+1,m2是“K數列”,求實數的取值范圍;
(Ⅱ)是否存在首項為-1的等差數列為“K數列”,且其前n項和
滿足
?若存在,求出
的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數的等比數列是“K數列”,數列
不是“K數列”,若
,試判斷數列
是否為“K數列”,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知點P在正方體ABCD-A′B′C′D′的對角線BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小.
(2)求DP與平面AA′D′D所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬中,側棱
底面
,且
,過棱
的中點
,作
交
于點
,連接
(Ⅰ)證明:.試判斷四面體
是否為鱉臑,若是,寫出其每個面的直角(只需寫
出結論);若不是,說明理由;
(Ⅱ)若面與面
所成二面角的大小為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為積極響應國家“陽光體育運動”的號召,某學校在了解到學生的實際運動情況后,發起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議。為調查該校學生每周平均體育運動時間的情況,從高一高二基礎年級與高三三個年級學生中按照4:3:3的比例分層抽樣,收集300位學生每周平均體育運動時間的樣本數據(單位:小時),得到如圖所示的頻率分布直方圖。
(1)據圖估計該校學生每周平均體育運動時間.并估計高一年級每周平均體育運動時間不足4小時的人數;
(2)規定每周平均體育運動時間不少于6小時記為“優秀”,否則為“非優秀”,在樣本數據中,有30位高三學生的每周平均體育運動時間不少于6小時,請完成下列列聯表,并判斷是否有99%的把握認為“該校學生的每周平均體育運動時間是否“優秀”與年級有關”.
基礎年級 | 高三 | 合計 | |
優秀 | |||
非優秀 | |||
合計 | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2,n=a+b+c+d.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com