已知橢圓,
、
是橢圓的左右焦點,且橢圓經過點
.
(1)求該橢圓方程;
(2)過點且傾斜角等于
的直線
,交橢圓于
、
兩點,求
的面積.
(1);(2)
.
解析試題分析:(1)求橢圓標準方程,就是要求,也即要找到關于
的兩個條件,本題中有
,又有橢圓過點
,把點坐標代入橢圓方程又得到一個關系式,解之即得;(2)本題是直線與橢圓相交問題,如果交點坐標能簡單求出,那么我們就求出交點坐標,然后再解題,但一般情況下,這類問題中都含有參數,或者交戰坐標很復雜,不易求得,這時我們采取“設而不求”的方法,即設交點為
,
,在把直線方程代入橢圓(或其他圓錐曲線)方程消去
得關于
的二次方程,則有
,
,則
,本題有
,由此可求出面積.
(1),則橢圓方程為
. 6分
(2)設,
,直線
. 8分
由, 10
,
. 14分
考點:(1)橢圓的標準方程;(2)直線與橢圓相交的綜合問題.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知橢圓
∶
的左、右焦點分別
、
焦距為
,且與雙曲線
共頂點.
為橢圓
上一點,直線
交橢圓
于另一點
.
(1)求橢圓的方程;
(2)若點的坐標為
,求過
、
、
三點的圓的方程;
(3)若,且
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:(
)的離心率為
,點(1,
)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點M(4,),其中
,切點分別是A、B,試利用結論:在橢圓
上的點(
)處的橢圓切線方程是
,證明直線AB恒過橢圓的右焦點
;
(3)試探究的值是否恒為常數,若是,求出此常數;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知A、B為拋物線C:y2 = 4x上的兩個動點,點A在第一象限,點B在第四象限l1、l2分別過點A、B且與拋物線C相切,P為l1、l2的交點.
(1)若直線AB過拋物線C的焦點F,求證:動點P在一條定直線上,并求此直線方程;
(2)設C、D為直線l1、l2與直線x = 4的交點,求面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2011•湖北)平面內與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關系;
(2)當m=﹣1時,對應的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在
軸上,離心率為
,它的一個焦點恰好與拋物線
的焦點重合.
求橢圓的方程;
設橢圓的上頂點為,過點
作橢圓
的兩條動弦
,若直線
斜率之積為
,直線
是否一定經過一定點?若經過,求出該定點坐標;若不經過,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓的離心率
,
.
(1)求橢圓C的方程;
(2)如圖,是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DP交
軸于點N,直線AD交BP于點M。設BP的斜率為
,MN的斜率為
.證明:
為定值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓,過點
且離心率為
.
求橢圓的方程;
已知是橢圓
的左右頂點,動點
滿足
,連接
角橢圓于點
,在
軸上是否存在異于點
的定點
,使得以
為直徑的圓經過直線
和直線
的交點,若存在,求出
點,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com