已知橢圓的中心在原點,焦點在
軸上,離心率為
,它的一個焦點恰好與拋物線
的焦點重合.
求橢圓的方程;
設橢圓的上頂點為,過點
作橢圓
的兩條動弦
,若直線
斜率之積為
,直線
是否一定經過一定點?若經過,求出該定點坐標;若不經過,請說明理由.
(1);(2)恒過一定點
.
解析試題分析:(1)可設橢圓方程為,因為橢圓的一個焦點恰好與拋物線
的焦點重合,所以
,又
,所以
,又因
,得
,所以橢圓方程為
;
(2)由(1)知,當直線
的斜率不存在時,可設
,設
,則
,
易得,不合題意;故直線
的斜率存在.設直線
的方程為:
,(
),并代入橢圓方程,得:
①,設
,則
是方程①的兩根,由韋達定理
,由
,利用韋達定理代入整理得
,又因為
,所以
,此時直線
的方程為
,即可得出直線
的定點坐標.
(1)由題意可設橢圓方程為,
因為橢圓的一個焦點恰好與拋物線的焦點重合,所以
,
又,所以
,
又因,得
,
所以橢圓方程為;
(2)由(1)知,
當直線的斜率不存在時,設
,設
,則
,
,不合題意.
故直線的斜率存在.設直線
的方程為:
,(
),并代入橢圓方程,得:
①
由得
②
設,則
是方程①的兩根,由韋達定理
,
由得:
,
即,整理得
,
又因為,所以
,此時直線
的方程為
.
所以直線恒過一定點
考點:橢圓的標準方程;圓錐曲線的定點問題.
科目:高中數學 來源: 題型:解答題
已知拋物線C:的焦點為F,直線
與y軸的交點為P,與C的交點為Q,且
.
(1)求C的方程;
(2)過F的直線與C相交于A,B兩點,若AB的垂直平分線
與C相較于M,N兩點,且A,M,B,N四點在同一圓上,求
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,原點為
,拋物線
的方程為
,線段
是拋物線
的一條動弦.
(1)求拋物線的準線方程和焦點坐標
;
(2)若,求證:直線
恒過定點;
(3)當時,設圓
,若存在且僅存在兩條動弦
,滿足直線
與圓
相切,求半徑
的取值范圍?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2011•山東)在平面直角坐標系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過原點的直線l交橢圓C于A,B兩點,線段AB的中點為E,射線OE交橢圓C于點G,交直線x=﹣3于點D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點;
(ii)試問點B,G能否關于x軸對稱?若能,求出此時△ABG的外接圓方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的離心率為
,短軸一個端點到右焦點的距離為
.
(1)求橢圓C的方程;
(2)設直線與橢圓C交于A、B兩點,以
弦為直徑的圓過坐標原點
,試探討點
到直線
的距離是否為定值?若是,求出這個定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y = -3上,M點滿足,
,M點的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動點,l為C在P點處得切線,求O點到l距離的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓C1:=1(a>b>0)的左、右焦點分別為為
,
恰是拋物線C2:
的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
.
(1)求C1的方程;
(2)平面上的點N滿足,直線l∥MN,且與C1交于A,B兩點,若
,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知,
,
,
分別是橢圓
的四個頂點,△
是一個邊長為2的等邊三角形,其外接圓為圓
.
(1)求橢圓及圓
的方程;
(2)若點是圓
劣弧
上一動點(點
異于端點
,
),直線
分別交線段
,橢圓
于點
,
,直線
與
交于點
.
(ⅰ)求的最大值;
(ⅱ)試問:..,
兩點的橫坐標之和是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com