已知,點B是
軸上的動點,過B作AB的垂線
交
軸于點Q,若
,
.
(1)求點P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線
的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。
(1) y2=x,此即點P的軌跡方程;
(2)存在定直線x=,以PM為直徑的圓與直線x=
的相交弦長為定值
。
【解析】
試題分析:(1)設B(0,t),設Q(m,0),t2=|m|,
m
0,m=-4t2,
Q(-4t2,0),設P(x,y),則
=(x-
,y),
=(-4t2-
,0),2
=(-
,2 t),
+
=2
。
(x-
,y)+ (-4t2-
,0)= (-
,2 t),
x=4t2,y="2" t,
y2=x,此即點P的軌跡方程; 6分。
(2)由(1),點P的軌跡方程是y2=x;設P(y2,y),M (4,0) ,則以PM為直徑的圓的圓心即PM的中點T(
,
), 以PM為直徑的圓與直線x=a的相交弦長:
L=2
=2=2
10分
若a為常數,則對于任意實數y,L為定值的條件是a-="0," 即a=
時,L=
存在定直線x=
,以PM為直徑的圓與直線x=
的相交弦長為定值
。13分
考點:本題主要考查拋物線方程,軌跡方程的求法,直線與圓的位置關系,平面向量的坐標運算。
點評:中檔題,首先利用幾何條件,確定向量的坐標,并運用向量的坐標運算,確定得到拋物線方程。在直線與圓的去位置關系研究中,充分利用了圓的“特征三角形”,確定弦長。
科目:高中數學 來源:2014屆吉林省白山市高三摸底考試理科數學試卷(解析版) 題型:解答題
已知,點B是
軸上的動點,過B作AB的垂線
交
軸于點Q,若
,
.
(1)求點P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線
的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源:2014屆吉林省白山市高三摸底考試文科數學試卷(解析版) 題型:解答題
已知,點B是
軸上的動點,過B作AB的垂線
交
軸于點Q,若
,
.
(1)求點P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線
的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源:2013年湖南省長沙市高考模擬文科數學試卷(解析版) 題型:解答題
已知,點B是
軸上的動點,過B作AB的垂線
交
軸于點Q,若
,
.
(1)求點P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線
的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
已知,點B是
軸上的動點,過B作AB的垂線
交
軸于點Q,若
,
.
(1)求點P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線
的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com