精英家教網 > 高中數學 > 題目詳情

【題目】已知函數 為自然對數的底數)

(1)討論函數的單調性;

(2)當時,上為減函數,求實數的最小值.

【答案】(1)當時,函數上單調遞增;當時,上單調遞增,在上單調遞減;(2)。

【解析】

(Ⅰ)求出函數g(x)的定義域,函數的導數=ex-2﹣a,分a≤0和a>0兩種情況,分別討論函數的單調性即可.(Ⅱ) x∈(1,+∞)上為減函數,轉化f'(x)= 0x∈(1,+∞)恒成立,利用二次函數

在對稱軸處取得最值小于等于0推出結果即可.

(1)

時,,函數上單調遞增;

時,由,得.

,則,函數上單調遞增;

,則,函數上單調遞減

(2)當時,

上為減函數,故上恒成立.

所以當

故當時,即時,

所以,于是,

的最小值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數).M是曲線上的動點,將線段OM繞O點順時針旋轉得到線段ON,設點N的軌跡為曲線.以坐標原點O為極點,軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(除極點外),且有定點,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知aR,函數fx)=x22ax+5.

1)若a>1,且函數fx)的定義域和值域均為[1,a],求實數a的值;

2)若不等式x|fx)﹣x2|1x∈[,]恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某次水下考古活動中,需要潛水員潛入水深為30米的水底進行作業.其用氧量包含3個方面:①下潛時,平均速度為(米/單位時間),單位時間內用氧量為為正常數);②在水底作業需5個單位時間,每個單位時間用氧量為0.4;③返回水面時,平均速度為(米/單位時間), 單位時間用氧量為0.2.記該潛水員在此次考古活動中,總用氧量為.

1)將表示為的函數;

2)設0<≤5,試確定下潛速度,使總的用氧量最少.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在ABC中,ACBCAB,四邊形ABED是正方形,平面ABED⊥底面ABCG,F分別是EC,BD的中點.

1)求證:GF∥平面ABC;

2)求證:平面DAC⊥平面EBC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】56日返校體檢中,學號為)的五位同學的體重增加量是集合中的元素,并滿足,則這五位同學的體重增加量所有可能的情況有________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】觀察下列等式:

按此規律,第個等式可為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圖是一幾何體的平面展開圖,其中四邊形ABCD為正方形,E,F,G,H分別為,,的中點,在此幾何體中,給出下面五個結論:①平面平面ABCD;②平面BDG;③平面PBC;④平面BDG;⑤平面BDG.

其中正確結論的序號是________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列滿足:

1)求的值;

2)求證:數列是等差數列,并求數列的通項公式;

3)設假設恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视