【題目】已知函數
(
為自然對數的底數)
(1)討論函數的單調性;
(2)當且
時,
在
上為減函數,求實數
的最小值.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數).M是曲線
上的動點,將線段OM繞O點順時針旋轉
得到線段ON,設點N的軌跡為曲線
.以坐標原點O為極點,
軸正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)在(1)的條件下,若射線與曲線
分別交于A, B兩點(除極點外),且有定點
,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)=x2﹣2ax+5.
(1)若a>1,且函數f(x)的定義域和值域均為[1,a],求實數a的值;
(2)若不等式x|f(x)﹣x2|1對x∈[
,
]恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某次水下考古活動中,需要潛水員潛入水深為30米的水底進行作業.其用氧量包含3個方面:①下潛時,平均速度為(米/單位時間),單位時間內用氧量為
(
為正常數);②在水底作業需5個單位時間,每個單位時間用氧量為0.4;③返回水面時,平均速度為
(米/單位時間), 單位時間用氧量為0.2.記該潛水員在此次考古活動中,總用氧量為
.
(1)將表示為
的函數;
(2)設0<≤5,試確定下潛速度
,使總的用氧量最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在△ABC中,AC=BC=AB,四邊形ABED是正方形,平面ABED⊥底面ABC,G,F分別是EC,BD的中點.
(1)求證:GF∥平面ABC;
(2)求證:平面DAC⊥平面EBC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖是一幾何體的平面展開圖,其中四邊形ABCD為正方形,E,F,G,H分別為,
,
,
的中點,在此幾何體中,給出下面五個結論:①平面
平面ABCD;②
平面BDG;③
平面PBC;④
平面BDG;⑤
平面BDG.
其中正確結論的序號是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com