【題目】已知函數,
,
,
.
(Ⅰ)討論的單調性;
(Ⅱ)對于任意,任意
,總有
,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】在四棱錐中,
為正三角形,平面
平面
,
,
,
.
(1)求證:平面平面
;
(2)求三棱錐的體積;
(3)在棱上是否存在點
,使得
平面
?若存在,請確定點
的位置并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+1,x∈R.
(1)分別計算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;
(2)由(1)你發現了什么結論?并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx,g(x)=0.5x2-bx, (b為常數)。
(1)函數f(x)的圖象在點(1,f(1))處的切線與函數g(x)的圖象相切,求實數b的值;
(2)若函數h(x)=f(x)+g(x)在定義域上不單調,求實數b的取值范圍;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知冪函數f(x)=xα,當x>1時,恒有f(x)<x,則α的取值范圍是( )
A. (0,1) B. (-∞,1)
C. (0,+∞) D. (-∞,0)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com