精英家教網 > 高中數學 > 題目詳情

【題目】已知冪函數f(x)=xα,當x>1時,恒有f(x)<x,則α的取值范圍是(  )

A. (0,1) B. (-∞,1)

C. (0,+∞) D. (-∞,0)

【答案】B

【解析】當x>1時,恒有f(x)<x,即當x>1時,函數f(x)=xα的圖象在y=x的圖象的下方,作出冪函數f(x)=xα在第一象限的圖象.由圖象可知α<1時滿足題意,故選B.

點睛: 本題考查冪函數的圖象和性質,屬于基礎題.冪函數的圖象一定在第一象限內,一定不在第四象限,至于是否在第二、三象限內,要看函數的奇偶性;冪函數的圖象最多只能同時在兩個象限內;如果冪函數圖象與坐標軸相交,則交點一定是原點對于函數f(x)xα,,函數在單調遞減;,函數在單調遞增;,函數為常函數.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形,,是兩個邊長為2的正三角形,

(1)求證:平面⊥平面;

(2)求二面角的余弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱錐A-BCD,△ABC是等腰直角三角形,ACBC,BC=2,AD平面BCD,AD=1.

(1)求證:平面ABC平面ACD;

(2)EAB中點,求點A到平面CED的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,.

(Ⅰ)討論的單調性;

(Ⅱ)對于任意,任意,總有,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知AB側面BB1C1C,ABBC=1,BB1=2,∠BCC1 .

(1)求證:C1B平面ABC

(0≤λ≤1),且平面AB1EBB1E所成的銳二面角的大小為30°,

試求λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某射擊運動員每次擊中目標的概率都是0.8.現采用隨機模擬的方法估計該運動員射擊4次,至多擊中1次的概率:先由計算器產生09之間取整數值的隨機數,指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標;因為射擊4次,故以每4個隨機數為一組,代表射擊4次的結果.經隨機模擬產生了20組隨機數:

5 727 0 293 7 140 9 857 0 347

4 373 8 636 9 647 1 417 4 698

0 371 6 233 2 616 8 045 6 011

3 661 9 597 7 424 6 710 4 281

據此估計,該射擊運動員射擊4次至多擊中1次的概率為(  )

A. 0.95 B. 0.1

C. 0.15 D. 0.05

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且

(1)判斷函數的奇偶性;

(2) 判斷函數(1,+)上的單調性,并用定義證明你的結論;

(3),求實數a的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】社會公眾人物的言行一定程度上影響著年輕人的人生觀、價值觀.某媒體機構為了解大學生對影視、歌星以及著名主持人方面的新聞(簡稱:“星聞”)的關注情況,隨機調查了某大學的位大學生,得到信息如下表:

(Ⅰ)從所抽取的人內關注“星聞”的大學生中,再抽取三人做進一步調查,求這三人性別不全相同的概率;

(Ⅱ)是否有以上的把握認為“關注‘星聞’與性別有關”,并說明理由;

(Ⅲ)把以上的頻率視為概率,若從該大學隨機抽取位男大學生,設這人中關注“星聞”的人數為,求的分布列及數學期望.

附: .

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某企業生產的某種產品中抽取500,測量這些產品的一項質量指標值,由測量結果得如下頻率分布直方圖:

(1)求這500件產品質量指標值的樣本平均數和樣本方差s2(同一組中的數據用該組區間的中點值作代表);

(2)由直方圖可以認為,這種產品的質量指標值Z服從正態分布N(μ,σ2)其中μ近似為樣本平均數,σ2近似為樣本方差s2.

()利用該正態分布,P(187.8<Z<212.2);

()某用戶從該企業購買了100件這種產品X表示這100件產品中質量指標值位于區間(187.8,212.2)的產品件數.利用()的結果,求E(X).

附: 12.2.ZN(μ,σ2),P(μσ<Z<μσ)0.682 6,P(μ2σ<Z<μ2σ)0.954 4.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视