【題目】在直角坐標系中,曲線
的參數方程為
以
為極點,
軸正半軸為極軸建立極坐標系,設點
在曲線
上,點
在曲線
上,且
為正三角形.
(1)求點,
的極坐標;
(2)若點為曲線
上的動點,
為線段
的中點,求
的最大值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點
的直線l的參數方程為
(為參數),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數列,求a的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列結論:在回歸分析中
(1)可用相關指數的值判斷模型的擬合效果,
越大,模型的擬合效果越好;
(2)可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(3)可用相關系數的值判斷模型的擬合效果,
越大,模型的擬合效果越好;
(4)可用殘差圖判斷模型的擬合效果,殘差點比較均勻地落在水平的帶狀區域中,說明這樣的模型比較合適.帶狀區域的寬度越窄,說明模型的擬合精度越高.
以上結論中,不正確的是( )
A.(1)(3)B.(2)(3)C.(1)(4)D.(3)(4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設X~N(μ1,),Y~N(μ2,
),這兩個正態分布密度曲線如圖所示,下列結論中正確的是 ( )
A. P(Y≥μ2)≥P(Y≥μ1)
B. P(X≤σ2)≤P(X≤σ1)
C. 對任意正數t,P(X≥t)≥P(Y≥t)
D. 對任意正數t,P(X≤t)≥P(Y≤t)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖在四棱錐中,側棱
平面
,底面
是直角梯形,
,
,
,
,
為側棱
中點.
(1)設為棱
上的動點,試確定點
的位置,使得平面
平面
,并寫出證明過程;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】出版商為了解某科普書一個季度的銷售量(單位:千本)和利潤
(單位:元/本)之間的關系,對近年來幾次調價之后的季銷售量進行統計分析,得到如下的10組數據.
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2.4 | 3.1 | 4.6 | 5.3 | 6.4 | 7.1 | 7.8 | 8.8 | 9.5 | 10 | |
18.1 | 14.1 | 9.1 | 7.1 | 4.8 | 3.8 | 3.2 | 2.3 | 2.1 | 1.4 |
根據上述數據畫出如圖所示的散點圖:
(1)根據圖中所示的散點圖判斷和
哪個更適宜作為銷售量
關于利潤
的回歸方程類型?(給出判斷即可,不需要說明理由)
(2)根據(1)中的判斷結果及參考數據,求出關于
的回歸方程;
(3)根據回歸方程預測當每本書的利潤為10.5元時的季銷售量.
參考公式及參考數據:
①對于一組數據,其回歸直線
的斜率和截距的公式分別為
.
②參考數據:
6.50 | 6.60 | 1.75 | 82.50 | 2.70 |
表中.另:
.計算時,所有的小數都精確到0.01.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】月份的二中迎來了國內外的眾多賓客,其中很多人喜歡詢問
團隊模式,為了了解“詢問
團隊模式”是否與性別有關,在
月期間,隨機抽取了
人,得到如下所示的列聯表:
關心“ | 不關心“ | 合計 | |
男性 | 12 | ||
女性 | 36 | ||
合計 | 80 |
(1)若在這人中,按性別分層抽取一個容量為
的樣本,男性應抽
人,請將上面的列聯表補充完整,并據此資料能否在犯錯誤的概率不超過
前提下,認為關心“
團隊”與性別有關系?
(2)若以抽取樣本的頻率為概率,從月來賓中隨機抽取
人贈送精美紀念品,記這
人中關心“
團隊”人數為
,求
的分布列和數學期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是南北方向的一條公路,
是北偏東
方向的一條公路,某風景區的一段邊界為曲線
.為方便游客光,擬過曲線
上的某點分別修建與公路
,
垂直的兩條道路
,
,且
,
的造價分別為5萬元
百米,40萬元
百米,建立如圖所示的直角坐標系
,則曲線符合函數
模型,設
,修建兩條道路
,
的總造價為
萬元,題中所涉及的長度單位均為百米.
(1)求解析式;
(2)當為多少時,總造價
最低?并求出最低造價.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com