【題目】已知下面四個命題:
①“若,則
或
”的逆否命題為“若
且
,則
”
②“”是“
”的充分不必要條件
③命題“若,則
”的逆否命題為真命題
④若為假命題,則
、
均為假命題,其中真命題個數為( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數,且
.
(1)判斷并證明在區間
上的單調性;
(2)若函數與函數
在
上有相同的值域,求
的值;
(3)函數,若對于任意
,總存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數部分圖象如圖所示.
(1)求函數的解析式;
(2)將函數的圖象做怎樣的變換可以得到函數
的圖象;
(3)若方程在
上有兩個不相等的實數根,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在極坐標系中,曲線的極坐標方程是
,以極點為原點
,極軸為
軸正半軸(兩坐標系取相同的單位長度)的直角坐標系
中,曲線
的參數方程為:
(
為參數).
(1)求曲線的直角坐標方程與曲線
的普通方程;
(2)將曲線經過伸縮變換
后得到曲線
,若
,
分別是曲線
和曲線
上的動點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中常數
.
(1)當時,求函數
的單調遞增區間;
(2)設定義在上的函數
在點
處的切線方程為
,若
在
內恒成立,則稱
為函數
的“類對稱點”,當
時,試問
是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某地區中小學生人數和近視情況如圖1和圖2所示.為了解該地區中小學生的近視形成原因,用分層抽樣的方法抽取2%的學生作為樣本進行調查.
(1)求樣本容量和抽取的高中生近視人數分別是多少?
(2)在抽取的名高中生中,平均每天學習時間超過9小時的人數為
,其中有12名學生近視,請完成高中生平均每天學習時間與近視的列聯表:
平均學習時間不超過9小時 | 平均學習時間超過9小時 | 總計 | |
不近視 | |||
近視 | |||
總計 |
(3)根據(2)中的列聯表,判斷是否有的把握認為高中生平均每天學習時間與近視有關?
附:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自2018年10月1日起,中華人民共和國個人所得稅
新規定,公民月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應納稅所得額,此項稅款按下表分段累計計算:
全月應納稅所得額 | 稅率 |
不超過1500元的部分 | 3 |
超過1500元不超過4500元的部分 | 10 |
超過4500元不超過9000元的部分 | 20 |
超過9000元不超過35000元 | 25 |
如果小李10月份全月的工資、薪金為7000元,那么他應該納稅多少元?
如果小張10月份交納稅金425元,那么他10月份的工資、薪金是多少元?
寫出工資、薪金收入
元
月
與應繳納稅金
元
的函數關系式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com