【題目】選修4-5:不等式選講
已知函數(其中
).
(1)當時,求不等式
的解集;
(2)若關于的不等式
恒成立,求
的取值范圍.
【答案】(1).
(2).
【解析】試題分析:(1)方法一:分類討論去掉絕對值,轉化為一般的不等式,即可求解不等式的解集;
方法二:去掉絕對值,得到分段函數,畫出函數的圖象,結合圖象即可求解不等式的解集.
(2)不等式即關于
的不等式
恒成立,利用絕對值不等式,得
,進而求解實數
的取值范圍.
試題解析:
(1)當時,函數
,
則不等式為,
①當時,原不等式為
,解得:
;
②當時,原不等式為
,解得:
.此時不等式無解;
③當時,原不等式為
,解得:
,
原不等式的解集為.
方法二:當時,函數
,畫出函數
的圖象,如圖:
結合圖象可得原不等式的解集為.
(2)不等式即為
,
即關于的不等式
恒成立.
而
,
所以,
解得或
,
解得或
.
所以的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知圓的圓心為
,半徑為
.以極點為原點,極軸方向為
軸正半軸方向,利用相同單位長度建立平面直角坐標系,直線
的參數方程為
(
為參數,
且
).
(Ⅰ)寫出圓的極坐標方程和直線
的普通方程;
(Ⅱ)若直線與圓
交于
、
兩點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,側面
底面
,底面
是平行四邊形,
,
,
,
為
的中點,點
在線段
上.
(Ⅰ)求證: ;
(Ⅱ)試確定點的位置,使得直線
與平面
所成的角和直線
與平面
所成的角相等.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從1到7的7個數字中取兩個偶數和三個奇數組成沒有重復數字的五位數.
試問:(1)能組成多少個不同的五位偶數?
(2)五位數中,兩個偶數排在一起的有幾個?
(3)兩個偶數不相鄰且三個奇數也不相鄰的五位數有幾個?(所有結果均用數值表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知下面四個命題:
①“若,則
或
”的逆否命題為“若
且
,則
”
②“”是“
”的充分不必要條件
③命題“若,則
”的逆否命題為真命題
④若為假命題,則
、
均為假命題,其中真命題個數為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果直線與橢圓只有一個交點,稱該直線為橢圓的“切線”.已知橢圓,點
是橢圓
上的任意一點,直線
過點
且是橢圓
的“切線”.
(1)證明:過橢圓上的點
的“切線”方程是
;
(2)設,
是橢圓
長軸上的兩個端點,點
不在坐標軸上,直線
,
分別交
軸于點
,
,過
的橢圓
的“切線”
交
軸于點
,證明:點
是線段
的中點;
(3)點不在
軸上,記橢圓
的兩個焦點分別為
和
,判斷過
的橢圓
的“切線”
與直線
,
所成夾角是否相等?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=
.
(1)試將污水凈化管道的長度L表示為的函數,并寫出定義域;
(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】玉山一中籃球體育測試要求學生完成“立定投籃”和“三步上籃”兩項測試,“立定投籃”和“三步上籃”各有2次投籃機會,先進行“立定投籃”測試,如果合格才能參加“三步上籃”測試.為了節約時間,每項測試只需且必須投中一次即為合格.小華同學“立定投籃”和“三步上籃”的命中率均為.假設小華不放棄任何一次投籃機會且每次投籃是否命中相互獨立.
(1)求小華同學兩項測試均合格的概率;
(2)設測試過程中小華投籃次數為X,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的是( )
A. 命題的否定是:
B. 命題中,若
,則
的否命題是真命題
C. 如果為真命題,
為假命題,則
為真命題,
為假命題
D. 是函數
的最小正周期為
的充分不必要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com