精英家教網 > 高中數學 > 題目詳情

【題目】根據題意解答
(1)求定積分 |x2﹣2|dx的值;
(2)若復數z1=a+2i(a∈R),z2=3﹣4i,且 為純虛數,求|z1|

【答案】
(1)解: |x2﹣2|dx= + (2﹣x2)dx= + = +
(2)解:∵ = = = + i為純虛數,

=0, ≠0,

解得a=


【解析】(1)對x分類討論,利用微積分基本定理即可得出.(2)利用復數的運算法則、純虛數的定義即可得出.
【考點精析】解答此題的關鍵在于理解定積分的概念的相關知識,掌握定積分的值是一個常數,可正、可負、可為零;用定義求定積分的四個基本步驟:①分割;②近似代替;③求和;④取極限,以及對復數的乘法與除法的理解,了解設;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知各項不為零的數列的前項和為,且,

1)若成等比數列,求實數的值;

2)若成等差數列,

①求數列的通項公式;

②在間插入個正數,共同組成公比為的等比數列,若不等式對任意的恒成立,求實數的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是根據某班50名同學在某次數學測驗中的成績(百分制)繪制的概率分布直方圖,其中成績分組區間為:[40,50),[50,60),…,[80,90),[90,100].

(1)求圖中a的值;
(2)計算該班本次的數學測驗成績不低于80分的學生的人數;
(3)根據頻率分布直方圖,估計該班本次數學測驗成績的平均數與中位數(要求中位數的估計值精確到0.1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣
(1)判斷函數f(x)的奇偶性,并加以證明;
(2)用定義證明函數f(x)在區間[1,+∞)上為增函數;
(3)若函數f(x)在區間[2,a]上的最大值與最小值之和不小于 ,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某中學聯盟舉行了一次“盟校質量調研考試”活動,為了解本次考試學生的某學科成績情況,從中抽取部分學生的分數(滿分為分,得分取正整數,抽取學生的分數均在之內)作為樣本(樣本容量為)進行統計,按照的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖(莖葉圖中僅列出了得分在的數據)

(Ⅰ)求樣本容量和頻率分布直方圖中的的值;

(Ⅱ)在選取的樣本中,從成績在分以上(含分)的學生中隨機抽取名學生參加“省級學科基礎知識競賽”,求所抽取的名學生中恰有一人得分在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖在四棱錐P-ABCD中,底面ABCD為矩形,側面PAD底面ABCD,

(1)求證:平面PAB平面PCD;

(2)若過點B的直線垂直平面PCD,求證: //平面PAD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大學在開學季準備銷售一種盒飯進行試創業,在一個開學季內,每售出1盒該盒飯獲利潤10元,未售出的產品,每盒虧損5元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了150盒該產品,以(單位:盒,)表示這個開學季內的市場需求量,(單位:元)表示這個開學季內經銷該產品的利潤.

(Ⅰ)根據直方圖估計這個開學季內市場需求量的平均數和眾數;

(Ⅱ)將表示為的函數;

(Ⅲ)根據頻率分布直方圖估計利潤不少于1350元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列對于確定的正整數,若存在正整數使得成立,則稱數列為“階可分拆數列”.

(1)設 是首項為2,公差為2的等差數列,證明為“3階可分拆數列”;

(2)設數列的前項和為,若數列為“階可分拆數列”,求實數的值;

(3)設,試探求是否存在使得若數列為“階可分拆數列”.若存在,請求出所有,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個口袋裝有大小相同的小球9個,其中紅球2個、黑球3個、白球4個,現從中抽取2次,每次抽取一個球.
(1)若有放回地抽取2次,求兩次所取的球的顏色不同的概率;
(2)若不放回地抽取2次,取得紅球記2分,取得黑球記1分,取得白球記0分,記兩次取球的得分之和為隨機變量X,求X的分布列和數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视