(本題滿分12分)
如圖,已知橢圓的長軸為
,過點
的直線
與
軸垂直,直線
所經過的定點恰好是橢圓的一個頂點,且橢圓的離心率
(1)求橢圓的標準方程;
(2)設是橢圓上異于
、
的任意一點,
軸,
為垂足,延長
到點
使得
,連接
并延長交直線
于點
,
為
的中點.試判斷直線
與以
為直徑的圓
的位置關系.
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)(文科)已知曲線的離心率
,直線
過
、
兩點,原點
到
的距離是
.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過點作直線
交雙曲線于
兩點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設雙曲線C:的左、右頂點分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點
。
(1)若直線m與x軸正半軸的交點為T,且,求點T的坐標;
(2)求直線A1P與直線A2Q的交點M的軌跡E的方程;
(3)過點F(1,0)作直線l與(Ⅱ)中的軌跡E交于不同的兩點A、B,設,若
(T為(1)中的點)的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的右焦點為
,離心率為
.
(1)若,求橢圓的方程; (2)設直線
與橢圓相交于
兩點,
分別為線段
的中點.若坐標原點
在以
為直徑的圓上,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,定點M(1,0),橢圓短軸的端點是B1,B2,且
(1)求橢圓C的方程;
(2)設過點M且斜率不為0的直線交橢圓C于A,B兩點.試問x軸上是否存在定點P,使PM平分∠APB?若存在,求出點P的坐標;若不存在,說明理由,
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓,拋物線
的焦點均在
軸上,
的中心和
的頂點均為坐標原點
,從每條曲線上各取兩個點,將其坐標記錄于表中:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設雙曲線的兩個焦點分別為
、
,離心率為2.
(1)求雙曲線的漸近線方程;
(2)過點能否作出直線
,使
與雙曲線
交于
、
兩點,且
,若存在,求出直線方程,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com