【題目】已知定義在R上的函數f(x)滿足:y=f(x﹣1)的圖象關于(1,0)點對稱,且當x≥0時恒有f(x﹣ )=f(x+
),當x∈[0,2)時,f(x)=ex﹣1,則f(2017)+f(﹣2016)=( )
A.1﹣e
B.﹣1﹣e
C.e﹣1
D.e+1
科目:高中數學 來源: 題型:
【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0
(1)求m的取值范圍;
(2)圓C與直線x+2y﹣4=0相交于M,N兩點,且OM⊥ON(O為坐標原點),求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知動圓S過定點P(﹣2 ),且與定圓Q:(x﹣2
)2+y2=36相切,記動圓圓心S的軌跡為曲線C.
(1)求曲線C的方程;
(2)設曲線C與x軸,y軸的正半軸分別相交于A,B兩點,點M,N為橢圓C上相異的兩點,其中點M在第一象限,且直線AM與直線BN的斜率互為相反數,試判斷直線MN的斜率是否為定值.如果是定值,求出這個值;如果不是定值,說明理由;
(3)在(2)條件下,求四邊形AMBN面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ﹣k ln x,k>0.
(1)求f(x)的單調區間和極值;
(2)證明:若f(x)存在零點,則f(x)在區間(1, ]上僅有一個零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分圖象如圖所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的單調增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列五個命題:
①過點(-1,2)的直線方程一定可以表示為y-2=k(x+1)的形式(k∈R);
②過點(-1,2)且在x軸、y軸截距相等的直線方程是x+y-1=0;
③過點M(-1,2)且與直線l:Ax+By+C=0(AB≠0)垂直的直線方程是B(x+1)+A(y-2)=0;
④設點M(-1,2)不在直線l:Ax+By+C=0(AB≠0)上,則過點M且與l平行的直線方程是A(x+1)+B(y-2)=0;
⑤點P(-1,2)到直線ax+y+a2+a=0的距離不小于2.
以上命題中,正確的序號是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com