【題目】在如圖所示的幾何體中,AE⊥平面ABC,CD∥AE,F是BE的中點,AC=BC=1,∠ACB=90°,AE=2CD=2.
證明DF⊥平面ABE;
【答案】解:取AB的中點G,連接CG、FG.
因為CD∥AE,GF∥AE,所以CD∥GF.
又因為CD=1,,所以CD=GF.
所以四邊形CDFG是平行四邊形,DF∥CG.
在等腰Rt△ACB中,G是AB的中點,所以CG⊥AB.
因為EA⊥平面ABC,CG平面ABC,所以EA⊥CG.
而AB∩EA=A,所以CG⊥平面ABE.
又因為DF∥CG,所以DF⊥平面ABE.
【解析】將DF平移到CG的位置,欲證DF⊥平面ABE,即證CG⊥平面ABE,根據線面垂直的判定定理可知,只需證CG與平面ABE內的兩相交直線垂直即可;
【考點精析】解答此題的關鍵在于理解平面與平面之間的位置關系的相關知識,掌握兩個平面平行沒有交點;兩個平面相交有一條公共直線.
科目:高中數學 來源: 題型:
【題目】某廠生產某種零件,每個零件的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當一次訂購量為多少個時,零件的實際出廠單價恰降為51元?
(2)設一次訂購量為個,零件的實際出廠單價為
元.寫出函數
的表達式;
(3)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少元?如果訂購1000個,利潤又是多少元?(工廠售出一個零件的利潤=實際出廠單價-成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是 ( ).
A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數都超過50人
B. 由三角形的性質,推測空間四面體的性質
C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分
D. 在數列{an}中,a1=1,,
,
,由此歸納出{an}的通項公式
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg)其頻率分布直方圖如下:
(1) 記表示事件“舊養殖法的箱產量低于50kg”,估計
的概率;
(2)填寫下面聯表,并根據列聯表判斷是否有%的把握認為箱產量與養殖方法有關:
箱產量 | 箱產量 | |
舊養殖法 | ||
新養殖法 |
(3)根據箱產量的頻率分布直方圖,對兩種養殖方法的優劣進行比較.
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點.
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果函數的定義域為
,且存在實常數
,使得對于定義域內任意
,都有
成立,則稱此函數
具有“性質
”.
(1)判斷函數是否具有“
性質”,若具有“
性質”,求出所有
的值的集合,若不具有“
性質”,請說明理由;
(2)已知函數具有“
性質”,且當
時,
,求函數
在區間
上的值域;
(3)已知函數既具有“
性質”,又具有“
性質”,且當
時,
,若函數
的圖像與直線
有2017個公共點,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線C:x2=4y,過點M(0,2)任作一直線與C相交于A,B兩點,過點B作y軸的平行線與直線AO相交于點D(O為坐標原點).
(1)證明動點D在定直線上;
(2)作C的任意一條切線l(不含x軸),與直線y=2相交于點N1,與(1)中的定直線相交于點N2,證明|MN2|2-|MN1|2為定值,并求此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數列;
(Ⅱ)若C= ,△ABC的面積為4
,求c.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com