【題目】在正四棱錐S﹣ABCD中,O為頂點在底面內的投影,P為側棱SD的中點,且SO=OD,則直線BC與平面PAC的夾角是( )
A.30°
B.45°
C.60°
D.75°
【答案】A
【解析】解:如圖,以O為坐標原點,以OA為x軸,以OB為y軸,以OS為z軸,
建立空間直角坐標系O﹣xyz.
設OD=SO=OA=OB=OC=a,
則A(a,0,0),B(0,a,0),C(﹣a,0,0),P(0,﹣ ,
),
則 =(2a,0,0),
=(﹣a,﹣
,
),
=(a,a,0),
設平面PAC的一個法向量為 ,
則 ,
,
∴ ,可取
=(0,1,1),
∴cos< ,n>=
=
=
,
∴< ,n>=60°,
∴直線BC與平面PAC的夾角為90°﹣60°=30°.
故選:A.
【考點精析】認真審題,首先需要了解空間角的異面直線所成的角(已知為兩異面直線,A,C與B,D分別是
上的任意兩點,
所成的角為
,則
),還要掌握用空間向量求直線與平面的夾角(設直線
的方向向量為
,平面
的法向量為
,直線與平面所成的角為
,
與
的夾角為
, 則
為
的余角或
的補角的余角.即有:
)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2000平方米的樓房.經測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費用為560+48x(單位:元).
(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用= )
(1)寫出樓房平均綜合費用y關于建造層數x的函數關系式;
(2)該樓房應建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:函數f(x)=lg(ax2﹣x+ a)的定義域為R;命題q:不等式
<1+ax對一切正實數均成立.如果命題p或q為真命題,命題p且q為假命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐S﹣ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一點.過點E的平面α垂直于平面SAC.
(1)請作出平面α截四棱錐S﹣ABCD的截面(只需作圖并寫出作法);
(2)當SA=AB時,求二面角B﹣SC﹣D的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1 , F2是橢圓 (a>b>0)的兩個焦點,O為坐標原點,點P(﹣1,
)在橢圓上,且
=0,⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,并且與橢圓交于不同的兩點A,B
(1)求橢圓的標準方程;
(2)當
=λ,且滿足
≤λ≤
時,求弦長|AB|的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,an+1=1﹣ ,其中n∈N* .
(1)設bn= ,求證:數列{bn}是等差數列,并求出{an}的通項公式;
(2)設cn= ,數列{cncn+2}的前n項和為Tn , 求證:Tn<3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的首項a1= ,an+1=
,n∈N* .
(1)求證:數列{ ﹣1}為等比數列;
(2)記Sn= +
+…+
,若Sn<100,求滿足條件的最大正整數n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)的定義域為D={x|x≠0},且滿足對于任意x1 , x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結論;
(3)如果f(4)=1,f(x﹣1)<2,且f(x)在(0,+∞)上是增函數,求x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com