精英家教網 > 高中數學 > 題目詳情

【題目】如圖,設直線.的坐標為.過點的直線的斜率為,且與,分別交于點,的縱坐標均為正數).

1)求實數的取值范圍;

2)設,求面積的最小值;

3)是否存在實數,使得的值與無關?若存在,求出所有這樣的實數;若不存在,說明理由.

【答案】123)存在,

【解析】

1)由直線的方程為,求出交點坐標后由縱坐標為正可得的范圍.

2)在(1)基礎上,求出后可得面積,令換元后由基本不等式可得最小值.

3)在(1)基礎上,求出,不論為何值(有意義時),此值為常數,分析此式可得結論.

1)直線的方程為

得,,由,得,∵,∴

時,方程組無解,不合題意),

,∵,∴,

綜上.即

2)由(1)得,,,

設直線的傾斜角為,則,,∴

,

,則,

當且僅當,即,時等號成立,

的最小值是

3)假設存在滿足題意的,由(1,

,此式與值無關,則,

所以,存在,的值與無關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為,點為左支上任意一點,直線是雙曲線的一條漸近線,點在直線上的射影為,且當取最小值5時,的最大值為( )

A. B. C. D. 10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲乙兩人玩猜數字游戲,先由甲心中想一個數字,記為,再由乙猜甲剛才所想的數字,把乙猜的數字記為,其中,若,就稱甲乙“心有靈屏”.現任意找兩人玩這個游戲,則他們“心有靈犀”的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線相交于兩點,設點,已知,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A,B,C,D是直角坐標系中不同的四點,若,,且,則下列說法正確的是( ),

A.C可能是線段AB的中點

B.D可能是線段AB的中點

C.CD可能同時在線段AB

D.C、D不可能同時在線段AB的延長線上

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了16月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.

日期

110

210

310

410

510

610

晝夜溫差(℃)

10

11

13

12

8

6

就診人數(個)

22

25

29

26

16

12

1)若選取的是1月與6月的兩組數據,請根據25月份的數據,求出關于的線性回歸方程

2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考數據,

(參考公式:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求函數的單調區間;

2)設,若對任意,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】20世紀70年代,流行一種游戲——角谷猜想,規則如下:任意寫出一個自然數,按照以下的規律進行變換,如果是奇數,則下一步變成;如果是偶數,則下一步變成,這種游戲的魅力在于無論你寫出一個多么龐大的數字,最后必然會落在谷底,下列程序框圖就是根據這個游戲而設計的,如果輸出的的值為6,則輸入的值可以為( )

A. 5或16B. 16C. 5或32D. 4或5或32

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數).以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的參數方程;

(2)若曲線與曲線在第一象限分別交于兩點,且,求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视