【題目】已知函數,當
時,
的極大值為7;當
時,
有極小值.求
(1)的值;
(2)求函數在
上的最小值.
【答案】(1)a=﹣3,b=﹣9,c=2;(2)f(x)最小值=﹣25,f(x)最大值=2.
【解析】
(1)因為當x=﹣1時,f(x)有極大值,當x=3時,f(x)有極小值,所以把x=﹣1和3代入導數,導數都等于0,就可得到關于a,b,c的兩個等式,再根據極大值等于7,又得到一個關于a,b,c的等式,三個等式聯立,即可求出a,b,c的值.
(2)先求出函數f(x)的單調區間,從而求出函數的最大值和最小值.
(1)∴f(x)=x3+ax2+bx+c
∵f′(x)=3x2+2ax+b
而x=﹣1和x=3是極值點,
所以,解之得:a=﹣3,b=﹣9
又f(﹣1)=﹣1+a﹣b+c=﹣1﹣3+9+c=7,故得c=2,
∴a=﹣3,b=﹣9,c=2;
(2)由(1)可知f(x)=x3﹣3x2﹣9x+2,
∴f′(x)=3x2﹣6x﹣9=3(x﹣3)(x+1),
令f′(x)>0,解得:x>3或x<﹣1,
令f′(x)<0,解得:﹣1<x<3,
∴函數f(x)在[0,3]遞減,在[3,4]遞增,
∴f(x)最小值=f(3)=﹣25.
而f(4)=-18,f(0)=2,
∴f(x)最大值=2.
科目:高中數學 來源: 題型:
【題目】手機完全充滿電量,在開機不使用的狀態下,電池靠自身消耗一直到出現低電量警告之間所能維持的時間稱為手機的待機時間.
為了解,
兩個不同型號手機的待機時間,現從某賣場庫存手機中隨機抽取
,
兩個型號的手機各
臺,在相同條件下進行測試,統計結果如下,
手機編號 | |||||||
| |||||||
|
其中, ,
是正整數,且
.
()該賣場有
臺
型手機,試估計其中待機時間不少于
小時的臺數.
()從
型號被測試的
臺手機中隨機抽取
臺,記待機時間大于
小時的臺數為
,求
的分布列及其數學期望.
()設
,
兩個型號被測試手機待機時間的平均值相等,當
型號被測試手機待機時間的方差最小時,寫出
,
的值(結論不要求證明).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題錯誤的是( )
A. 若p∨q為假命題,則p∧q為假命題
B. 若a,b∈[0,1],則不等式a2+b2<成立的概率是
C. 命題“x∈R,使得x2+x+1<0”的否定是“x∈R,x2+x+1≥0”
D. 已知函數f(x)可導,則“f′(x0)=0”是“x0是函數f(x)的極值點”的充要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,點
在橢圓上.
()求橢圓
的方程.
()設動直線
與橢圓
有且僅有一個公共點,判斷是否存在以原點
為圓心的圓,滿足此圓與
相交于兩點
,
(兩點均不在坐標軸上),且使得直線
、
的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:方程
有兩個不相等的實數根;命題
:不等式
的解集為
.若
或
為真,
為假,求實數
的取值范圍.
【答案】或
【解析】
根據“或
為真,
為假”判斷出“
為真,
為假”,利用判別式列不等式分別求得
為假、
為真時
的取值范圍,再取兩者的交集求得實數
的取值范圍.
因為或
為真,
為假,所以
為真,
為假
為假,
,即:
,∴
或
,
為真,
,即:
,∴
或
,
所以取交集為或
.
【點睛】
本小題主要考查含有簡單邏輯聯結詞命題的真假性,考查一元二次方程根與判別式的關系,考查一元二次不等式解集為與判別式的關系,屬于中檔題.
【題型】解答題
【結束】
18
【題目】已知雙曲線的中心在原點,焦點為,
且離心率
.
(1)求雙曲線的方程;
(2)求以點為中點的弦所在的直線方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com