精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線Cx22pyp0)的焦點為F,直線l與拋物線C交于PQ兩點.

1)若l過點F,拋物線C在點P處的切線與在點Q處的切線交于點G.證明:點G在定直線上.

2)若p2,點M在曲線y上,MP,MQ的中點均在拋物線C上,求△MPQ面積的取值范圍.

【答案】1)證明見解析(2

【解析】

1)設,根據條件分別求出直線PG的方程,QG的方程,聯立可得,化簡得到點G在定直線上.

2)設,表示出的面積.結合在曲線y上,即可求出面積的取值范圍.

1)證明:易知,設

由題意可知直線l的斜率存在,故設其方程為

,得,所以

,得,,則,

直線PG的方程為,即①.

同理可得直線QG的方程為②.

聯立①②,可得

因為,所以,故點G在定直線上.

2)設,

,的中點分別為

因為,得中點均在拋物線上,

所以,為方程的解,

即方程的兩個不同的實根,

,

,即,

所以的中點的橫坐標為,縱坐標為.

,

所以的面積

,得

所以,

因為,所以,

所以面積的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數的最小值為0,其中.

1)求的值;

2)若對任意的,有恒成立,求實數的最小值;

3)記,為不超過的最大整數,求的值.

(參考數據:,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,與等邊所在的平面相互垂直,,為線段中點,直線與平面交于點.,.

1)求證:平面平面;

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)函數在區間)上有零點,求k的值;

2)若不等式對任意正實數x恒成立,求正整數m的取值集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠共有50位工人組裝某種零件.下面的散點圖反映了工人們組裝每個零件所用的工時(單位:分鐘)與人數的分布情況.由散點圖可得,這50位工人組裝每個零件所用工時的中位數為___________.若將500個要組裝的零件分給每個工人,讓他們同時開始組裝,則至少要過_________分鐘后,所有工人都完成組裝任務.(本題第一空2分,第二空3分)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國有十二生肖,又叫十二屬相,是以十二種動物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)形象化代表人的出生年份,現有十二生肖的吉祥物各一個,三位屬相不同的小朋友依次每人選一個,則三位小朋友都不選和自己屬相相同的吉祥物的選法有________種.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,,且.


1)過作截面與線段交于點H,使得平面,試確定點H的位置,并給出證明;

2)在(1)的條件下,若二面角的大小為,試求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數fx)=|xa|+|x+b|ab0.

1)當a1,b1時,求不等式fx)<3的解集;

2)若fx)的最小值為2,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業引進現代化管理體制,生產效益明顯提高.2018年全年總收入與2017年全年總收入相比增長了一倍,實現翻番.同時該企業的各項運營成本也隨著收入的變化發生了相應變化.下圖給出了該企業這兩年不同運營成本占全年總收入的比例,下列說法正確的是(

A.該企業2018年原材料費用是2017年工資金額與研發費用的和

B.該企業2018年研發費用是2017年工資金額、原材料費用、其它費用三項的和

C.該企業2018年其它費用是2017年工資金額的

D.該企業2018年設備費用是2017年原材料的費用的兩倍

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视