精英家教網 > 高中數學 > 題目詳情

【題目】已知,函數,函數

1)當函數圖象與軸相切時,求實數的值;

2)若函數恒成立,求實數的取值范圍;

3)當時,討論函數在區間上的零點個數.

【答案】1;(2;(3)當時,在區間1個零點,當時,在區間內無零點.

【解析】

1)設切點,由導數的幾何意義為切線的斜率構建方程,求得答案;

2)結合已知表示函數的解析式,對其求導,由導函數解析式可知單調遞增,再分類討論當,當,兩種情況下的單調性和最值即可;

3)結合已知表示函數的解析式,對其求導,由導函數解析式可知單調遞減,分類討論當時,易證,無零點;當時,由不等式性質與單調性易證得有1個零點;當時,由零點的存在性定理可知存在唯一,使得,再利用導數分析單調性,進而分析出此時無零點.

1)由題得設切點,,

所以,

,解得;

2,

因為單調遞增,所以單調遞增,

所以

,,單調遞增,

所以恒成立,所以

,,

所以

,

所以,使得

,,單調遞減,

所以時,,與矛盾舍去.

綜上

3,,單調遞減.

時,,因為

所以,即單調遞增.

,所以在區間內無零點.

時,,

所以,

,所以存在唯一,使得

所以在區間1個零點.

時,

單調遞減,

所以存在唯一,使得,

,單調遞增,

,,單調遞減,

所以當時,最大值為,

代入得,

因為,所以,故,

所以,在在區間內無零點.

綜上,當時,在區間1個零點,

時,在區間內無零點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數的最小正周期為,且其圖象關于直線對稱,則在下面結論中正確的個數是(

①圖象關于點對稱;

②圖象關于點對稱;

③在上是增函數;

④在上是增函數;

⑤由可得必是的整數倍.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的PK賽,兩隊各由4名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0.假設每局比賽A隊選手獲勝的概率均為,且各局比賽結果相互獨立,比賽結束時A隊的得分高于B隊的得分的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小店每天以每份5元的價格從食品廠購進若干份食品,然后以每份10元的價格出售.如果當天賣不完,剩下的食品還可以每份1元的價格退回食品廠處理.

(Ⅰ)若小店一天購進16份,求當天的利潤(單位:元)關于當天需求量(單位:份,)的函數解析式;

(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發生的概率.

(i)小店一天購進16份這種食品,表示當天的利潤(單位:元),求的分布列及數學期望;

(ii)以小店當天利潤的期望值為決策依據,你認為一天應購進食品16份還是17份?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數方程為(α為參數),直線C2的方程為,以O為極點,x軸的正半軸為極軸建立極坐標系.

(1)求曲線C1和直線C2的極坐標方程;

(2)若直線C2與曲線C1交于A,B兩點,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數是定義在上的偶函數,且對任意的恒有,已知當時,,則

是函數的一個周期;

②函數上是減函數,在上是增函數;

③函數的最大值是,最小值是;

是函數的一個對稱軸;

其中所有正確命題的序號是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,為平行四邊形ABCD所在平面外一點,M,N分別為AB,PC的中點,平面PAD平面PBC=.

(1)求證:BC∥;

(2)MN與平面PAD是否平行?試證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設常數.在平面直角坐標系中,已知點,直線,曲線軸交于點、與交于點、分別是曲線與線段上的動點.

(1)用表示點到點距離;

(2)設,線段的中點在直線,求的面積;

(3)設,是否存在以、為鄰邊的矩形,使得點上?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若函數R上是增函數,求實數a的取值范圍;

2)求所有的實數a,使得對任意時,函數的圖象恒在函數圖象的下方;

3)若存在,使得關于x的方程有三個不相等的實數根,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视