【題目】若a>0,b>0,則稱 為a,b的調和平均數.如圖,點C為線段AB上的點,且AC=a,BC=b,點O為線段AB中點,以AB為直徑做半圓,過點C作AB的垂線交半圓于D,連結OD,AD,BD.過點C作OD的垂線,垂足為E,則圖中線段OD的長度是a,b的算術平均數,那么圖中表示a,b的幾何平均數與調和平均數的線段,以及由此得到的不等關系分別是( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,圓O的參數方程為(
為參數).過點(
)且傾斜角為
的直線
與圓O交于A、B兩點.
(1)求的取值范圍;
(2)求AB中點P的軌跡的參數方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電容器充電后,電壓達到100 V,然后開始放電,由經驗知道,此后電壓U隨時間t變化的規律用公式U=Aebt(b<0)表示,現測得時間t(s)時的電壓U(V)如下表:
t(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
U(V) | 100 | 75 | 55 | 40 | 30 | 20 | 15 | 10 | 10 | 5 | 5 |
試求:電壓U對時間t的回歸方程.(提示:對公式兩邊取自然對數,把問題轉化為線性回歸分析問題)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開式中x的系數恰好是數列{an}的前n項和Sn .
(1)求數列{an}的通項公式;
(2)數列{bn}滿足 ,記數列{bn}的前n項和為Tn , 求證:Tn<1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,圓C的極坐標方程為ρ=4cosθ,直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標方程及弦AB的長;
(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸,長度單位相同,建立極坐標系,已知圓A的參數方程為 (其中θ為參數),圓B的極坐標方程為ρ=2sinθ.
(Ⅰ)分別寫出圓A與圓B的直角坐標方程;
(Ⅱ)判斷兩圓的位置關系,若兩圓相交,求其公共弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若
,
,cos ∠ABF=
,則C的離心率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=3sinx﹣πx,命題p:x∈(0, ),f(x)<0,則( )
A.p是假命題,¬p:?x∈(0, ),f(x)≥0
B.p是假命題,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命題,¬p:?x∈(0, ),f(x)>0
D.p是真命題,¬p:?x0∈(0, ),f(x0)≥0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinx﹣xcosx.
(1)討論f(x)在(0,2π)上的單調性;
(2)若關于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有兩個根,求實數m的取值范圍.
(3)求證:當x∈(0, )時,f(x)<
x3 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com