【題目】某面包店推出一款新面包,每個面包的成本價為4元,售價為10元,該款面包當天只出一爐(一爐至少15個,至多30個),當天如果沒有售完,剩余的面包以每個2元的價格處理掉.為了確定這一爐面包的個數,該店記錄了這款新面包最近30天的日需求量(單位:個),整理得下表:
日需求量 | 15 | 18 | 21 | 24 | 27 |
頻數 | 10 | 8 | 7 | 3 | 2 |
(1)根據表中數據可知,頻數與日需求量
(單位:個)線性相關,求
關于
的線性回歸方程;
(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數為24,記當日這款新面包獲得的總利潤為(單位:元).
(i)若日需求量為15個,求;
(ii)求的分布列及其數學期望.
科目:高中數學 來源: 題型:
【題目】現有若干撲克牌:6張牌面分別是2,3,4,5,6,7的撲克牌各一張,先后從中取出兩張.若每次取后放回,連續取兩次,點數之和是偶數的概率為;若每次取后不放回,連續取兩次,點數之和是偶數的概率為
,則( )
A.B.
C.
D.以上三種情況都有可能
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①中,
是
成立的充要條件;
②當時,有
;
③已知 是等差數列
的前n項和,若
,則
;
④若函數為
上的奇函數,則函數
的圖象一定關于點
成中心對稱.其中所有正確命題的序號為___________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
;直線
的參數方程為
(
為參數),直線
與曲線
分別交于
,
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)若點的極坐標為
,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,A、B兩點的坐標分別為(0,1)、(0,﹣1),動點P滿足直線AP與直線BP的斜率之積為,直線AP、BP與直線y=﹣2分別交于點M、N.
(1)求動點P的軌跡方程;
(2)求線段MN的最小值;
(3)以MN為直徑的圓是否經過某定點?若經過定點,求出定點的坐標;若不經過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
為自然對數的底數,
.
(1)討論函數的單調性,并寫出相應的單調區間;
(2)已知,
,若
對任意
都成立,求
的最大值;
(3)設,若存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規定:機動車行經人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統計數據:
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數 | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數據求違章人數y與月份之間的回歸直線方程+
(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數;
(3)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下2列聯表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
能否據此判斷有97.5的把握認為“禮讓斑馬線”行為與駕齡有關?
參考公式及數據:,
.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com