【題目】某市實施二手房新政一年多以來,為了了解新政對居民的影響,房屋管理部門調查了2018年6月至2019年6月期間購買二手房情況,首先隨機抽取了其中的400名購房者,并對其購房面積(單位:平方米,
)講行了一次統計,制成了如圖1所示的頻率分布直方圖,接著調查了該市2018年6月至2019年6月期間當月在售二手房的均價
(單位:萬元/平方米),制成了如圖2所示的散點圖(圖中月份代碼1-13分別對應2018年6月至2019年6月)
(1)試估計該市市民的平均購房面積(同一組中的數據用該組區間的中點值為代表);
(2)從該市2018年6月至2019年6月期間所有購買二手房的市民中任取3人,用頻率估計概率,記這3人購房面積不低于100平方米的人數為,求
的分布列與數學期望;
(3)根據散點圖選擇和
兩個模型講行擬合,經過數據處理得到兩個回歸方程,分別為
和
,并得到一些統計量的值,如表所示:
0.005459 | 0.005886 | |
0.006050 |
請利用相關系數判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測2019年8月份的二手房購房均價(精確到0.001).
參考數據:,
,
,
,
,
參考公式:
科目:高中數學 來源: 題型:
【題目】假設某種人壽保險規定,投保人沒活過65歲,保險公司要賠償10萬元;若投保人活過65歲,則保險公司不賠償,但要給投保人一次性支付4萬元已知購買此種人壽保險的每個投保人能活過65歲的概率都為,隨機抽取4個投保人,設其中活過65歲的人數為
,保險公司支出給這4人的總金額為
萬元(參考數據:
)
(1)指出X服從的分布并寫出與
的關系;
(2)求.(結果保留3位小數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )
A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”
B. 事件“甲分得1張紅牌”與事件“乙分得1張藍牌”
C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”
D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
)的左、右焦點分別是
,
,點
為
的上頂點,點
在
上,
,且
.
(1)求的方程;
(2)已知過原點的直線與橢圓
交于
,
兩點,垂直于
的直線
過
且與橢圓
交于
,
兩點,若
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發現成績都在內,現將成績按區間
,
,
,
,
進行分組,繪制成如下的頻率分布直方圖.
青年組
中老年組
(1)利用直方圖估計青年組的中位數和老年組的平均數;
(2)從青年組,
的分數段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應的市民參加政府組織的座談會,求選出的3位市民中有2位來自
分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某水域受到污染,水務部門決定往水中投放一種藥劑來凈化水質,已知每次投放質量為的藥劑后,經過
(
)天,該藥劑在水中釋放的濃度
(毫克
升)為
,其中
,當藥劑在水中釋放濃度不低于
(毫克
升)時稱為有效凈化,當藥劑在水中釋放的濃度不低于
(毫克
升)且不高于
(毫克
升)時稱為最佳凈化.
(1)如果投放的藥劑質量為,那么該水域達到有效凈化一共可持續幾天?
(2)如果投放的藥劑質量為,為了使該水域
天(從投放藥劑算起,包括第
天)之內都達到最佳凈化,確定應該投放的藥劑質量
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現將甲、乙兩個學生在高二的6次數學測試的成績(百分制)制成如圖所示的莖葉圖,進入高三后,由于改進了學習方法,甲、乙這兩個學生的考試成績預計同時有了大的提升:若甲(乙)的高二任意一次考試成績為,則甲(乙)的高三對應的考試成績預計為
.
(1)試預測:高三6次測試后,甲、乙兩個學生的平均成績分別為多少?誰的成績更穩定?
(2)若已知甲、乙兩個學生的高二6次考試成績分別由低到高進步的,定義為高三的任意一次考試后甲、乙兩個學生的當次成績之差的絕對值,求
的平均值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com