【題目】已知函數f(x)=()x.
(Ⅰ)當x∈[﹣1,1]時,求函數y=[f(x)]2﹣2af(x)+3的最小值g(a);
(Ⅱ)在(Ⅰ)的條件下,是否存在實數m>n>3,使得g(x)的定義域為[n,m],值域為[n2,m2]?若存在,求出m、n的值;若不存在,請說明理由.
【答案】(Ⅰ)g(a)=(Ⅱ)見解析.
【解析】試題分析:(Ⅰ)在的情況下,求出
的值域,對所給函數進行配方化簡,可利用一元二次函數的性質對
進行分類討論,可得函數的最小值
;(Ⅱ)假設存在,利用(Ⅰ)中分段函數在
的單調性,結合區間與值域,可得關于
的等式,解得
存在情況.
試題解析:(Ⅰ)∵x∈[﹣1,1],∴f(x)=()x∈[
,3],
y=[f(x)]2﹣2af(x)+3=[()x]2﹣2a(
)x+3
=[()x﹣a]2+3﹣a2. .
由一元二次函數的性質分三種情況:
若a<,則當
時,ymin=g(a)=
;
若≤a≤3,則當
時,ymin=g(a)=3﹣a2;
若a>3,則當時,ymin=g(a)=12﹣6a.
∴g(a)=
(Ⅱ)假設存在滿足題意的m、n,
∵m>n>3,且g(x)=12﹣6x在區間(3,+∞)內是減函數,
又g(x)的定義域為[n,m],值域為[n2,m2],
∴
兩式相減,得6(m﹣n)=(m+n)(m﹣n),
∵m>n>3,∴m+n=6,但這與“m>n>3”矛盾,
∴滿足題意的m、n不存在.
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,平行于
軸的兩條直線
分別交
于
兩點,交
的準線于
兩點.
(1)若在線段
上,
是
的中點,證明:
;
(2)若的面積是
的面積的兩倍,求
中點的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產A,B兩種產品,根據市場調查與預測,A產品的利潤與投資成正比,其關系如圖①;B產品的利潤與投資的算術平方根成正比,其關系如圖②.(注:利潤和投資單位:萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數關系式;
(2)已知該企業已籌集到18萬元資金,并將全部投入A,B兩種產品的生產,怎樣分配這18萬元投資,才能使該企業獲得最大利潤?其最大利潤約為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]
(1)當a=1時,求函數f(x)的值域;
(2)若f(x)≤-alnx+4恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點.
(Ⅰ)求證AM∥平面BDE;
(Ⅱ)求二面角A﹣DF﹣B的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,拋物線:
與橢圓
:
在第一象限的交點為
,
為坐標原點,
為橢圓的右頂點,
的面積為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點作直線
交
于
、
兩點,射線
、
分別交
于
、
兩點,記
和
的面積分別為
和
,問是否存在直線
,使得
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com