【題目】平面上有個點,將每一個點染上紅色或藍色.從這
個點中,任取
個點,記
個點顏色相同的所有不同取法總數為
.
(1)若,求
的最小值;
(2)若,求證:
.
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓
:
的左、右焦點分別為
,
.過焦點且垂直于
軸的直線與橢圓
相交所得的弦長為3,直線
與橢圓
相切.
(1)求橢圓的標準方程;
(2)是否存在直線:
與橢圓
相交于
兩點,使得
?若存在,求
的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數在定義域內存在實數x,滿足
,則稱
為“局部奇函數”.
已知函數
,試判斷
是否為“局部奇函數”?并說明理由;
設
是定義在
上的“局部奇函數”,求實數m的取值范圍;
若
為定義域R上的“局部奇函數”,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公園內有一塊以為圓心半徑為
米的圓形區域.為豐富市民的業余文化生活,現提出如下設計方案:如圖,在圓形區域內搭建露天舞臺,舞臺為扇形
區域,其中兩個端點
,
分別在圓周上;觀眾席為梯形
內切在圓
外的區域,其中
,
,且
,
在點
的同側.為保證視聽效果,要求觀眾席內每一個觀眾到舞臺
處的距離都不超過
米.設
,
.問:對于任意
,上述設計方案是否均能符合要求?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷
與
是否相似?如果相似,求出
與
的相似比;如果不相似,請說明理由;
(2)寫出與橢圓相似且短半軸長為
的橢圓
的方程;若在橢圓
上存在兩點
、
關于直線
對稱,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓過定點,且與定直線
相切,點
在
上.
(1)求動圓圓心的軌跡的方程;
(2)試過點且斜率為
的直線與曲線
相交于
兩點。問:
能否為正三角形?
(3)過點作兩條斜率存在且互相垂直的直線
,設
與軌跡
相交于
,
與軌跡
相交于點
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三條直線l1:2x-y+a=0(a>0),直線l2:4x-2y-1=0和直線l3:x+y-1=0,且l1和l2的距離是.
(1)求a的值.
(2)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點;②P點到l1的距離是P點到l2的距離的;③P點到l1的距離與P點到l3的距離之比是
?若能,求出P點坐標;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com