【題目】已知橢圓的左焦點為
,離心率
.
(I)求橢圓C的標準方程;
(II)已知直線交橢圓C于A,B兩點.
①若直線經過橢圓C的左焦點F,交y軸于點P,且滿足
.求證:
為定值;
②若,求
面積的取值范圍.
科目:高中數學 來源: 題型:
【題目】某醫藥研究所開發的一種新藥,如果成年人按規定的劑量服用,據監測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.
(1)寫出第一次服藥后,y與t之間的函數關系式y=f(t);
(2)據進一步測定:每毫升血液中含藥量不少于0.25微克時,治療有效.求服藥一次后治療有效的時間是多長?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,點(n,Sn)(n∈N*)在y=x2的函數圖象上.
(1)求數列{an}的通項公式;
(2)若bn=(-1)n+1anan+1,求數列{bn}的前100項和T100.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C1:x2+y2-2mx-4my+5m2-4=0(m∈R),圓C2:x2+y2=1.
(1)過定點M(1,-2)作圓C2的切線,求切線的方程;
(2)若圓C1與圓C2相交,求m的取值范圍;
(3)已知點P(2,0),圓C1上一點A,圓C2上一點B,求||的最小值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為50%,現采用隨機模擬的方法估計該運動員四次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數值的隨機數,指定0,1,2,3,4表示命中,5,6,7,8 9表示不命中;再以每四個隨機數為一組,代表四次投籃的結果.經隨機模擬產生了20組隨機數:9075 9660 1918 9257 2716 9325 8121 4589 5690 6832 4315 2573 3937 9279 5563 4882 7358 1135 1587 4989
據此估計,該運動員四次投籃恰有兩次命中的概率為____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,為方便金湖縣人民游覽三河風景區附近的“網紅橋”,現準備在河岸一側建造一個觀景臺A,已知射線PM, PN為兩邊夾角為120°的公路(長度均超過5千米),在兩條公路PM,PN上分別設立游客上下點B、C,在觀景臺A和游客上下點B、C之間和游客上下點B、C之間分別建造三條觀光線路AB,AC,BC,測得PB=3干米,PC=5千米.
(1)求線段BC的長度;
(2)若∠BAC= 60°,因政府要計算修建三條觀光線路所需費用,所以要計算AB,AC,BC三條線路的總長度的取值范圍,請你建立合適的數學模型,幫助政府解決這個問題.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com