【題目】如圖,四棱錐中,平面
底面
,
是等邊三角形,底面
是菱形,且
,
為棱
的中點,
為菱形
的中心,下列結論正確的有( )
A.直線與平面
平行B.直線
與直線
垂直
C.線段與線段
長度相等D.
與
所成角的余弦值為
科目:高中數學 來源: 題型:
【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了人口規模相當的個城市采用不同的定價方案作為試點,經過一個月的統計,發現該流量包的定價:
(單位:元/月)和購買總人數
(單位:萬人)的關系如表:
定價x(元/月) | 20 | 30 | 50 | 60 |
年輕人(40歲以下) | 10 | 15 | 7 | 8 |
中老年人(40歲以及40歲以上) | 20 | 15 | 3 | 2 |
購買總人數y(萬人) | 30 | 30 | 10 | 10 |
(Ⅰ)根據表中的數據,請用線性回歸模型擬合與
的關系,求出
關于
的回歸方程;并估計
元/月的流量包將有多少人購買?
(Ⅱ)若把元/月以下(不包括
元)的流量包稱為低價流量包,
元以上(包括
元)的流量包稱為高價流量包,試運用獨立性檢驗知識,填寫下面列聯,并通過計算說明是否能在犯錯誤的概率不超過
的前提下,認為購買人的年齡大小與流量包價格高低有關?
定價x(元/月) | 小于50元 | 大于或等于50元 | 總計 |
年輕人(40歲以下) | |||
中老年人(40歲以及40歲以上) | |||
總計 |
參考公式:其中
其中
參考數據:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著網購人數的日益增多,網上的支付方式也呈現一種多樣化的狀態,越來越多的便捷移動支付方式受到了人們的青睞,更被網友們評為“新四大發明”之一.隨著人們消費觀念的進步,許多人喜歡用信用卡購物,考慮到這一點,一種“網上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開發的新支付方式,簡單便捷,同時也滿足了部分網上消費群體在支付寶余額不足時的“賒購”消費需求.為了調查使用螞蟻花唄“賒購”消費與消費者年齡段的關系,某網站對其注冊用戶開展抽樣調查,在每個年齡段的注冊用戶中各隨機抽取100人,得到各年齡段使用螞蟻花唄“賒購”的人數百分比如圖所示.
(1)由大數據可知,在18到44歲之間使用花唄“賒購”的人數百分比y與年齡x成線性相關關系,利用統計圖表中的數據,以各年齡段的區間中點代表該年齡段的年齡,求所調查群體各年齡段“賒購”人數百分比y與年齡x的線性回歸方程(回歸直線方程的斜率和截距保留兩位有效數字);
(2)該網站年齡為20歲的注冊用戶共有2000人,試估算該網站20歲的注冊用戶中使用花唄“賒購”的人數;
(3)已知該網店中年齡段在18-26歲和27-35歲的注冊用戶人數相同,現從18到35歲之間使用花唄“賒購”的人群中按分層抽樣的方法隨機抽取8人,再從這8人中簡單隨機抽取2人調查他們每個月使用花唄消費的額度,求抽取的兩人年齡都在18到26歲的概率.
參考答案:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著移動互聯網的發展,與餐飲美食相關的手機APP軟件層出不窮.現從某市使用A和B兩款訂餐軟件的商家中分別隨機抽取100個商家,對它們的“平均送達時間”進行統計,得到頻率分布直方圖如下.
(1)已知抽取的100個使用A款訂餐軟件的商家中,甲商家的“平均送達時間”為18分鐘。現從使用A款訂餐軟件的商家中“平均送達時間”不超過20分鐘的商家中隨機抽取3個商家進行市場調研,求甲商家被抽到的概率;
(2)試估計該市使用A款訂餐軟件的商家的“平均送達時間”的眾數及平均數;
(3)如果以“平均送達時間”的平均數作為決策依據,從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,直角梯形中,
,
,E、F分別是
和
上的點,且
,
,
,沿
將四邊形
折起,如圖2,使
與
所成的角為60°.
(1)求證:平面
;
(2)M為上的點,
,若二面角
的余弦值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(t為參數),以坐標原點O為極點,以x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線C的極坐標方程為
.
(1)寫出直線的普通方程和曲線C的直角坐標方程;
(2)已知定點,直線
與曲線C分別交于P、Q兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線:ρ(2cosθ-sinθ)=6.
(Ⅰ)將曲線C1上的所有點的橫坐標,縱坐標分別伸長為原來的、2倍后得到曲線C2,試寫出直線
的直角坐標方程和曲線C2的參數方程.
(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,過點
作
交
于點
,以
為折痕把
折起,當幾何體
的的體積最大時,則下列命題中正確的個數是( )
①
②∥平面
③與平面
所成的角等于
與平面
所成的角
④與
所成的角等于
與
所成的角
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com