【題目】在直角坐標系中,直線
的參數方程為
(t為參數),以坐標原點O為極點,以x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線C的極坐標方程為
.
(1)寫出直線的普通方程和曲線C的直角坐標方程;
(2)已知定點,直線
與曲線C分別交于P、Q兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
,
為直線
上的任意一點.
(1)為曲線
上任意一點,求
兩點間的最小距離;
(2)過點作曲線
的兩條切線,切點為
,曲線
的對稱中心為點
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,平面
底面
,
是等邊三角形,底面
是菱形,且
,
為棱
的中點,
為菱形
的中心,下列結論正確的有( )
A.直線與平面
平行B.直線
與直線
垂直
C.線段與線段
長度相等D.
與
所成角的余弦值為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】目前,新冠病毒引發的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫院組織專家統計了該地區500名患者新冠病毒潛伏期的相關信息,數據經過匯總整理得到如下圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數的患者,稱為“短潛伏者”,潛伏期高于平均數的患者,稱為“長潛伏者”.
短潛伏者 | 長潛伏者 | 合計 | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計 | 300 |
(1)求這500名患者潛伏期的平均數(同一組中的數據用該組區間的中點值作代表),并計算出這500名患者中“長潛伏者”的人數;
(2)為研究潛伏期與患者年齡的關系,以潛伏期是否高于平均數為標準進行分層抽樣,從上述500名患者中抽取300人,得到如下列聯表,請將列聯表補充完整,并根據列聯表判斷是否有97.5%的把握認為潛伏期長短與患者年齡有關:
(3)研究發現,有5種藥物對新冠病毒有一定的抑制作用,其中有2種特別有效,現在要通過逐一試驗直到把這2種特別有效的藥物找出來為止,每一次試驗花費的費用是500元,設所需要的試驗費用為X,求X的分布列與數學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓
的右焦點為
,下頂點為P,過點
的動直線l交橢圓C于A,B兩點.
(1)當直線l平行于x軸時,P,F,A三點共線,且,求橢圓C的方程;
(2)當橢圓C的離心率為何值時,對任意的動直線l,總有?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為給定的大于2的正整數,集合
,已知數列
:
,
,…,
滿足條件:
①當時,
;
②當時,
.
如果對于,有
,則稱
為數列
的一個逆序對.記數列
的所有逆序對的個數為
.
(1)若,寫出所有可能的數列
;
(2)若,求數列
的個數;
(3)對于滿足條件的一切數列,求所有
的算術平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了解學生對消防安全知識的掌握情況,開展了網上消防安全知識有獎競賽活動,并對參加活動的男生、女生各隨機抽取20人,統計答題成績,分別制成如下頻率分布直方圖和莖葉圖:
(1)把成績在80分以上(含80分)的同學稱為“安全通”.根據以上數據,完成以下列聯表,并判斷是否有95%的把握認為是否是“安全通”與性別有關
男生 | 女生 | 合計 | |
安全通 | |||
非安全通 | |||
合計 |
(2)以樣本的頻率估計總體的概率,現從該校隨機抽取2男2女,設其中“安全通”的人數為,求
的分布列與數學期望.
附:參考公式,其中
.
參考數據:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經過點P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com