【題目】【2018河南安陽市高三一模】如下圖,在平面直角坐標系中,直線
與直線
之間的陰影部分即為
,區域
中動點
到
的距離之積為1.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)動直線穿過區域
,分別交直線
于
兩點,若直線
與軌跡
有且只有一個公共點,求證:
的面積恒為定值.
【答案】(Ⅰ);(Ⅱ)見解析.
【解析】試題分析:
(Ⅰ)由點到直線距離公式直接把已知表示出來,并化簡可得方程;
(Ⅱ)直線與軌跡
有且只有一個公共點,即直線
與軌跡
相切,因此可求出當
與
垂直(即斜率不存在)時,
面積,當
斜率存在時,可設其方程為
,與雙曲線方程聯立方程組,由
可得
,再設出
,由直線相交可求得
(用
表示),計算
面積可得結論.
試題解析:
(Ⅰ)由題意得,
.
因為點在區域
內,所以
與
同號,得
,
即點的軌跡
的方程為
.
(Ⅱ)設直線與
軸相交于點
,當直線
的斜率不存在時,
,
,得
.
當直線的斜率存在時,設其方程為
,顯然
,則
,
把直線的方程與
聯立得
,
由直線與軌跡
有且只有一個公共點,知
,
得,得
或
.
設,
,由
得
,同理,得
.
所以
.
綜上, 的面積恒為定值2.
科目:高中數學 來源: 題型:
【題目】在平面上, ⊥
,|
|=|
|=1,
=
+
.若|
|<
,則|
|的取值范圍是( )
A.(0, ]
B.( ,
]
C.( ,
]
D.( ,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
,
,
,若該三棱錐的四個頂點均在同一球面上,則該球的體積為( )
A. B.
C.
D.
【答案】D
【解析】在三棱錐中,因為
,
,
,所以
,則該幾何體的外接球即為以
為棱長的長方體的外接球,則
,其體積為
;故選D.
點睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進行聯系,常用補體法補成正方體或長方體進行處理,本題中由數量關系可證得
從而幾何體的外接球即為以
為棱長的長方體的外接球,也是處理本題的技巧所在.
【題型】單選題
【結束】
21
【題目】已知函數,則
的大致圖象為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某游樂場有一個半徑為50米的摩天輪,該摩天輪的圓心距離地面52米,摩天輪逆時針勻速轉動,每轉動一圈需要
分鐘.若游客從最低點處登上摩天輪,從摩天輪開始轉動計時.
(I)求游客與地面的距離(米)與摩天輪轉動時間
(分)的函數關系式;
(Ⅱ)摩天輪轉動一圈的過程中,游客的高度在距地面77米及以上的時間不少于4分鐘,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,且當x<0時,f(x)=x2+2x.現已畫出函數f(x)在y軸左側的圖象如圖所示,
(1)畫出函數f(x),x∈R剩余部分的圖象,并根據圖象寫出函數f(x),x∈R的單調區間;(只寫答案)
(2)求函數f(x),x∈R的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在xOy平面上,將兩個半圓弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),兩條直線y=1和y=﹣1圍成的封閉圖形記為D,如圖中陰影部分,記D繞y軸旋轉一周而成的幾何體為Ω.過(0,y)(|y|≤1)作Ω的水平截面,所得截面積為4π +8π.試利用祖暅原理、一個平放的圓柱和一個長方體,得出Ω的體積值為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com