【題目】已知:已知函數f(x)=﹣ +2ax,
(Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線的斜率為﹣6,求實數a;
(Ⅱ)若a=1,求f(x)的極值;
(Ⅲ)當0<a<2時,f(x)在[1,4]上的最小值為﹣ ,求f(x)在該區間上的最大值.
【答案】解:(Ⅰ)因為f′(x)=﹣x2+x+2a,
曲線y=f(x)在點P(2,f(2))處的切線的斜率k=f′(2)=2a﹣2,
2a﹣2=﹣6,a=﹣2
(Ⅱ)當a=1時, ,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)
x | (﹣∞,﹣1) | ﹣1 | (﹣1,2) | 2 | (2,+∞) |
f′(x) | ﹣ | 0 | + | 0 | ﹣ |
f(x) | 單調減 | 單調增 | 單調減 |
所以,f(x)的極大值為 ,f(x)的極小值為
.
(Ⅲ)令f′(x)=0,得 ,
,
f(x)在(﹣∞,x1),(x2,+∞)上單調遞減,在(x1,x2)上單調遞增,
當0<a<2時,有x1<1<x2<4,所以f(x)在[1,4]上的最大值為f(x2),f(4)<f(1),
所以f(x)在[1,4]上的最小值為 ,解得:a=1,x2=2.
故f(x)在[1,4]上的最大值為
【解析】1、求出曲線y=f(x)在點P(2,f(2))處的導數值等于切線的斜率-6,即可求出實數a的值。
2、通過a=1利用導函數為0,判斷導數符號即可求得f(x)的極值。
3、根據題意可得當0<a<2時利用導函數的單調性通過f(x)在[1,4]上的最小值為-即可求a進而可得f(x)在[1,4]上的最大值。
科目:高中數學 來源: 題型:
【題目】觀察下列各式: C =40;
C +C
=41;
C +C
+C
=42;
C +C
+C
+C
=43;
…
照此規律,當n∈N*時,
C +C
+C
+…+C
= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數f(x)在[0,π]上的單調遞減區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n), .
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關系,并用數學歸納法證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a2=1,|an+1﹣an|= ,若a2n+1>a2n﹣1 , a2n+2<a2n(n∈N+)則數列{(﹣1)nan}的前40項的和為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥CD,CD⊥AC,過CD的平面分別與PA,PB交于點E,F.
(1)求證:CD⊥平面PAC;
(2)求證:AB∥EF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com