【題目】在平面直角坐標系xOy中,圓C經過A(0,1),B(3,4),C(6,1)三點.
(1)求圓C的方程;
(2)若圓C與直線x﹣y+a=0交于A,B兩點,且OA⊥OB,求a的值.
【答案】
(1)解:設圓的方程為x2+y2+Dx+Ey+F=0,
將已知三點代入,得 ,
解得:D=﹣6,E=﹣2,F=1,
所以圓C的方程為x2+y2﹣6x﹣2y+1=0,
即 .
(2)解:設A(x1,y1),B(x2,y2),其坐標滿足方程組:
消去y,得到方程 .
由已知可得,判別式 .
因此, ,
從而: ①,
由于:OA⊥OB,可得x1x2+y1y2=0,
又:y1=x1+a,y2=x2+a,
所以: .②
由①,②,得:a=﹣1,滿足△>0,
故a=﹣1.
【解析】(1)設圓的一般方程,利用待定系數法即可求圓C的方程;(2)利用設而不求思想設出圓C與直線x﹣y+a=0的交點A,B坐標,通過OA⊥OB建立坐標之間的關系,結合韋達定理尋找關于a的方程,通過解方程確定出a的值.
【考點精析】本題主要考查了圓的標準方程的相關知識點,需要掌握圓的標準方程:;圓心為A(a,b),半徑為r的圓的方程才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點中,相鄰兩個交點之間的距離為
,且圖象上一個最低點為
.
(1)求f(x)的解析式;
(2)當 ,求f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人玩猜數字游戲,先由甲心中任想一個數字記為,再由乙猜甲剛才想的數字,把乙猜的數字記為
,且
、
.若
,則稱甲乙“心有靈犀”.現任意找兩人玩這個游戲,則二人“心有靈犀”的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列結論正確的是
①在某項測量中,測量結果服從正態分布
.若
在
內取值的概率為0.35,則
在
內取值的概率為0.7;
②以模型去擬合一組數據時,為了求出回歸方程,設
,其變換后得到線性回歸方程
,則
;
③已知命題“若函數在
上是增函數,則
”的逆否命題是“若
,則函數
在
上是減函數”是真命題;
④設常數,則不等式
對
恒成立的充要條件是
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是函數的圖象,給出下列命題:
①是函數
的極值點
②1是函數的極小值點
③在
處切線的斜率大于零
④在區間
上單調遞減
則正確命題的序號是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】要得到函數y=2cosxsin(x+ )﹣
的圖象,只需將y=sinx的圖象( )
A.先向左平移 個單位長度,再將所有點的橫坐標縮短為原來的
倍(縱坐標不變)
B.先向左平移 個單位長度,再將所有點的橫坐標縮短為原來的2倍(縱坐標不變)
C.先將所有點的橫坐標縮短為原來的2倍(縱坐標不變),再向左平移 個單位長度
D.先將所有點的橫坐標縮短為原來的 倍(縱坐標不變),再向左平移
個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)寫出曲線的直角坐標方程;
(2)已知點的直角坐標為
,直線
與曲線
相交于不同的兩點
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com