【題目】如圖,已知四棱錐P﹣ABCD中,PD⊥底面ABCD,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點.
(1)證明:MN∥平面PAD;
(2)若PB與平面ABCD所成的角為45°,求三棱錐C﹣BDN的體積V.
【答案】
(1)證明:∵M,N是PB,PC的中點,
∴MN∥BC,又BC∥AD,
∴MN∥AD,又MN平面PAD,AD平面PAD,
∴MN∥平面PAD
(2)證明:連接BD,則BD=2 ,
∵PD⊥底面ABCD,
∴∠PBD為PB與平面ABCD所成的角,
∴∠PBD=45°,
∴PD=BD=2 ,
∵N為PC的中點,
∴N到平面ABCD的距離h= PD=
,
∴VC﹣BDN=VN﹣BCD= =
=
.
【解析】(1)由MN∥BC∥AD即可得出MN∥AD,從而得出結論;(2)連接BD,由PD=BD=2 得出N到平面ABCD的距離為h=
,則VC﹣BDN=VN﹣BCD=
.
【考點精析】認真審題,首先需要了解直線與平面平行的判定(平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行).
科目:高中數學 來源: 題型:
【題目】某高校在2014年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如下表所示.
組號 | 分組 | 頻數 | 頻率 |
第1組 | [160,165) | 5 | 0.050 |
第2組 | [165,170) | n | 0.350 |
第3組 | [170,175) | 30 | p |
第4組 | [175,180) | 20 | 0.200 |
第5組 | [180,185] | 10 | 0.100 |
合計 | 100 | 1.000 |
(1)求頻率分布表中n,p的值,并補充完整相應的頻率分布直方圖;
(2)為了能選拔出最優秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學生進入第二輪面試,則第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定從6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有1名學生被甲考官面試的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為
(
為參數),以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系,圓
的極坐標方程為
,直線
與圓
交于
,
兩點.
(1)求圓的直角坐標方程及弦
的長;
(2)動點在圓
上(不與
,
重合),試求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年春節期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規則為:若摸到3個紅球,享受免單優惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優惠的概率;
(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】霧霾天氣是一種大氣污染狀態,PM2.5被認為是造成霧霾天氣的“元兇”,PM2.5日均值越小,空氣質量越好.國家環境標準設定的PM2.5日均值(微克/立方米)與空氣質量等級對應關系如表:
PM2.5日均值 | 0﹣﹣35 | 35﹣﹣75 | 75﹣﹣115 | 115﹣﹣150 | 150﹣﹣250 | 250以上 |
空氣質量等級 | 1級 | 2級 | 3級 | 4級 | 5級 | 6級 |
由某市城市環境監測網獲得4月份某5天甲、乙兩城市的空氣質量指數數據,用莖葉圖表示,如圖所示.
(1)試根據統計數據,分別寫出兩城區的PM2.5日均值的中位數,并從中位數角度判斷哪個城區的空氣質量較好?
(2)考慮用頻率估計概率的方法,試根據統計數據,估計甲城區某一天空氣質量等級為3
(3)分別從甲、乙兩個城區的統計數據中任取一個,試求這兩城區空氣質量等級相同的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=3ax2+2bx+c,且有a+b+c=0,f(0)>0,f(1)>0.
(Ⅰ)求證:a>0,且﹣2< <﹣1;
(Ⅱ)求證:函數y=f(x)在區間(0,1)內有兩個不同的零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,A、B、C三點滿足 =
+
.
(1)求證:A、B、C三點共線;
(2)已知A(1,cosx),B(1+cosx,cosx)(0≤x≤ ),f(x)=
﹣(2m+
)|
|的最小值為﹣
,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC=2,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com