【題目】已知全集U=R,集合A={x∈R|2x﹣3≥0},B={x|1<x<2},C={x∈N|1≤x<a}.
(Ⅰ)求A∪B;
(Ⅱ)若C中恰有五個元素,求整數a的值;
(Ⅲ)若A∩C=,求實數a的取值范圍.
【答案】解:(Ⅰ)集合A={x∈R|2x﹣3≥0}=[ ,+∞),B={x|1<x<2}=(1,2),
∴A∪B=(1,+∞),
(Ⅱ)∵C={x∈N|1≤x<a},C中恰有五個元素,則整數a的值為6,
(Ⅲ)∵C={x∈N|1≤x<a}=[1,a),A∩C=,
∴1≤a≤2
【解析】(1)根據題意解出集合A、B,使用并集運算即可,(2)根據恰有五個元素可得出a的整數值為6,(3)解出集合C,由A∩C=可得到a的取值范圍.
【考點精析】解答此題的關鍵在于理解交、并、補集的混合運算的相關知識,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法.
科目:高中數學 來源: 題型:
【題目】某網店經營的一種商品進價是每件10元,根據一周的銷售數據得出周銷量P(件)與單價x(元)之間的關系如圖折線所示,該網店與這種商品有關的周開支均為25元.
(I)根據周銷量圖寫出周銷量P(件)與單價x(元)之間的函數關系式;
(Ⅱ)寫出周利潤y(元)與單價x(元)之間的函數關系式;當該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知對數函數f(x)=logax(a>0,且a≠1)的圖象經過點(4,2).
(1)求實數a的值;
(2)如果f(x+1)<0,求實數x的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點A,B分別是橢圓 的長軸的左右端點,點F為橢圓的右焦點,直線PF的方程為:
且PA⊥PF.
(1)求直線AP的方程;
(2)設點M是橢圓長軸AB上一點,點M到直線AP的距離等于|MB|,求橢圓上的點到點M的距離d的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的首項a1=1,前n項和為Sn , 且S1 , 成等差數列.
(1)求數列{an}的通項公式;
(2)若數列{bn}為遞增的等比數列,且集合{b1 , b2 , b3}{a1 , a2 , a3 , a4 , a5},設數列{anbn}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1 中,AA1=AB=AC=1,E,F分別是CC1、BC 的中點,AE⊥ A1B1 , D為棱A1B1上的點.
(1)證明:DF⊥AE;
(2)是否存在一點D,使得平面DEF與平面ABC所成銳二面角的余弦值為 ?若存在,說明點D的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列所給4個圖像中,與所給3件事吻合最好的順序為( )
(1.)小明離開家不久,發現自己把作業本忘在家里了,于是立刻返回家里取了作業本再上學;
(2.)小明騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間;
(3.)小明出發后,心情輕松,緩緩行進,后來為了趕時間開始加速.
A.(4)(1)(2)
B.(4)(2)(3)
C.(4)(1)(3)
D.(1)(2)(4)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com