精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,曲線是過點,傾斜角為的直線,以直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.

(1)求曲線的普通方程和曲線的一個參數方程;

(2)曲線與曲線相交于兩點,求的值.

【答案】(1)曲線的普通方程為,由題得,曲線的一個參數方程為為參數);(2.

【解析】試題分析:(1)由極坐標和直角坐標互化公式轉化極坐標方程為普通方程即可.直接利用直線的傾斜角,以及經過的點 求出直線的參數方程:

2)直線的參數方程代入橢圓方程,利用韋達定理,根據參數的幾何意義求解即可.

試題解析:(1

,

即曲線的普通方程為,

由題得,曲線的一個參數方程為

為參數);

2)設,

,代入中,

,整理得,

,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數 ,其中 為自然對數的底數.

(Ⅰ)若在區間內具有相同的單調性,求實數的取值范圍;

(Ⅱ)若,且函數的最小值為,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求下列函數解析式:

(1)已知是一次函數,且滿足3,求

(2)已知,求的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數上的最大值;

(2)令,若在區間上為單調遞增函數,求的取值范圍;

(3)當時,函數的圖象與軸交于兩點,又的導函數.若正常數滿足條件.證明: <0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中均為實數, 為自然對數的底數.

(I)求函數的極值;

(II)設,若對任意的,

恒成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知的邊所在直線的方程為,滿足,點邊所在直線上且滿足.

(1)求邊所在直線的方程;

(2)求外接圓的方程;

(3)若動圓過點,且與的外接圓外切,求動圓的圓心的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現在頸椎病患者越來越多,甚至大學生也出現了頸椎病,年輕人患頸椎病多與工作、生活方式有關,某調查機構為了了解大學生患有頸椎病是否與長期過度使用電子產品有關,在遂寧市中心醫院隨機的對入院的50名大學生進行了問卷調查,得到了如下的4×4列聯表:

未過度使用

過度使用

合計

未患頸椎病

15

5

20

患頸椎病

10

20

30

合計

25

25

50

(1)是否有99.5%的把握認為大學生患頸錐病與長期過度使用電子產品有關?

(2)已知在患有頸錐病的10名未過度使用電子產品的大學生中,有3名大學生又患有腸胃炎,現在從上述的10名大學生中,抽取3名大學生進行其他方面的排查,記選出患腸胃炎的學生人數為,求的分布列及數學期望.

參考數據與公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量,,向量垂直,且.

(1)求數列的通項公式;

2)若數列滿足,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小組共有五位同學,他們的身高(單位:米)以及體重指標(單位:千克、米2).如下表所示:

(1)從該小組身高低于1.80的同學中任選2人,求選到的2人身高都在1.78以下的概率;

(2)從該小組同學中任選2人,求選到的2人的身高都在1.70以上且體重指標都在中的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视