精英家教網 > 高中數學 > 題目詳情

【題目】線段AB的兩端在直二面角αlβ的兩個面內,并與這兩個面都成30°角,則異面直線ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

【答案】B

【解析】設AB=a,在平面α內,作AA′⊥l于A′,

則AA′⊥β,連A′B,則∠ABA′=30°.

在Rt△AA′B中,AB=a,

所以AA′=a.

同理作BB′⊥l于B′,連AB′,則∠BAB′=30°,

所以BB′=a,AB′=a,

所以A′B′==a,

過B作BCA′B′.

連接A′C,則A′CBB′,連接AC,在Rt△AA′C中,

AC==a.

由BC⊥平面AA′C,所以△ABC為直角三角形,

且AC=BC,所以∠ABC=45°,為l與AB所成角.選B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】從某企業生產的某種產品中抽取500,測量這些產品的一項質量指標值由測量結果得如下頻率分布直方圖:

(1)求這500件產品質量指標值的樣本平均數和樣本方差s2(同一組中的數據用該組區間的中點值作代表);

(2)由直方圖可以認為這種產品的質量指標值Z服從正態分布N(μ,σ2)其中μ近似為樣本平均數,σ2近似為樣本方差s2.

()利用該正態分布P(187.8<Z<212.2);

()某用戶從該企業購買了100件這種產品X表示這100件產品中質量指標值位于區間(187.8,212.2)的產品件數.利用()的結果,求E(X).

附: 12.2.ZN(μ,σ2),P(μσ<Z<μσ)0.682 6,P(μ2σ<Z<μ2σ)0.954 4.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8.

有時可用函數

描述學習某學科知識的掌握程度,其中x表示某學科知識的學習次數(),表示對該學科知識的掌握程度,正實數a與學科知識有關.

1) 證明:當時,掌握程度的增加量總是下降;

2) 根據經驗,學科甲、乙、丙對應的a的取值區間分別為,,

.當學習某學科知識6次時,掌握程度是85%,請確定相應的學科.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓ab>0的離心率,過點的直線與原點的距離為

1求橢圓的方程

2已知定點,若直線與橢圓交于C、D兩點是否存在k的值,使以CD為直徑的圓過E點?請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“中國式過馬路”是網友對部分中國人集體闖紅燈現象的一種調侃,及“湊夠一撮人就可以走了,和紅綠燈無關”,某校研究性學習小組對全校學生按“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”等三種形式進行調查獲得下表數據:

跟從別人闖紅燈

從不闖紅燈

帶頭闖紅燈

男生

980

410

60

女生

340

150

60

用分層抽樣的方法,從所有被調查的人中抽取一個容量為的樣本,其中在“跟從別人闖紅燈”的人中抽取了66人,

(Ⅰ) 求的值;

(Ⅱ)在所抽取的“帶頭闖紅燈”的人中,任選取2人參加星期天社區組織的“文明交通”宣傳活動,求這2人中至少有1人是女生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐PABCD中,底面ABCD是邊長為8的菱形,BAD=,若PA=PD=5,平面PAD平面ABCD

(1)求四棱錐PABCD的體積;

(2)求證:ADPB

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若上為增函數,求實數的取值范圍;

(2)當時,函數有零點,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2016·重慶高二檢測)如圖,三棱柱ABC-A1B1C1,側棱垂直底面,ACB=90°,AC=BC=AA1,D是棱AA1的中點.

(1)證明平面BDC1⊥平面BDC.

(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)若函數的圖象經過P34)點,求a的值;

2)比較大小,并寫出比較過程;

3)若,求a的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视