【題目】線段AB的兩端在直二面角α-l-β的兩個面內,并與這兩個面都成30°角,則異面直線AB與l所成的角是( )
A. 30° B. 45°
C. 60° D. 75°
科目:高中數學 來源: 題型:
【題目】從某企業生產的某種產品中抽取500件,測量這些產品的一項質量指標值,由測量結果得如下頻率分布直方圖:
(1)求這500件產品質量指標值的樣本平均數和樣本方差s2(同一組中的數據用該組區間的中點值作代表);
(2)由直方圖可以認為,這種產品的質量指標值Z服從正態分布N(μ,σ2),其中μ近似為樣本平均數,σ2近似為樣本方差s2.
(ⅰ)利用該正態分布,求P(187.8<Z<212.2);
(ⅱ)某用戶從該企業購買了100件這種產品,記X表示這100件產品中質量指標值位于區間(187.8,212.2)的產品件數.利用(ⅰ)的結果,求E(X).
附: ≈12.2.若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
有時可用函數
描述學習某學科知識的掌握程度,其中x表示某學科知識的學習次數(),
表示對該學科知識的掌握程度,正實數a與學科知識有關.
(1) 證明:當時,掌握程度的增加量
總是下降;
(2) 根據經驗,學科甲、乙、丙對應的a的取值區間分別為,
,
.當學習某學科知識6次時,掌握程度是85%,請確定相應的學科.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率
,過點
和
的直線與原點的距離為
.
(1)求橢圓的方程.
(2)已知定點,若直線
與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國式過馬路”是網友對部分中國人集體闖紅燈現象的一種調侃,及“湊夠一撮人就可以走了,和紅綠燈無關”,某校研究性學習小組對全校學生按“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”等三種形式進行調查獲得下表數據:
跟從別人闖紅燈 | 從不闖紅燈 | 帶頭闖紅燈 | |
男生 | 980 | 410 | 60 |
女生 | 340 | 150 | 60 |
用分層抽樣的方法,從所有被調查的人中抽取一個容量為的樣本,其中在“跟從別人闖紅燈”的人中抽取了66人,
(Ⅰ) 求的值;
(Ⅱ)在所抽取的“帶頭闖紅燈”的人中,任選取2人參加星期天社區組織的“文明交通”宣傳活動,求這2人中至少有1人是女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為8的菱形,∠BAD=,若PA=PD=5,平面PAD⊥平面ABCD.
(1)求四棱錐P﹣ABCD的體積;
(2)求證:AD⊥PB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2016·重慶高二檢測)如圖,三棱柱ABC-A1B1C1中,側棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點.
(1)證明:平面BDC1⊥平面BDC.
(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com