【題目】下列五個正方體圖形中,是正方體的一條對角線,點M,N,P分別為其所在棱的中點,求能得出
⊥面MNP的圖形的序號(寫出所有符合要求的圖形序號)
【答案】①④⑤
【解析】為了得到本題答案,必須對5個圖形逐一進行判別.對于給定的正方體,l位置固定,截面MNP變動,l與面MNP是否垂直,可從正、反兩方面進行判斷.在MN、NP、MP三條線中,若有一條不垂直l,則可斷定l與面MNP不垂直;若有兩條與l都垂直,則可斷定l⊥面MNP;若有l的垂面∥面MNP,也可得l⊥面MNP.
解法1 作正方體ABCD-A1B1C1D1如附圖,與題設圖形對比討論.在附圖中,三個截面BA1D、EFGHKR和CB1D1都是對角線l (即 AC1)的垂面.
對比圖①,由MN∥BA l,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.
對比圖②,由MN與面CB1D1相交,而過交點且與l垂直的直線都應在面CBlDl內,所以MN不垂直于l,從而l不垂直于面MNP.
對比圖③,由MP與面BA l D相交,知l不垂直于MN,故l不垂直于面MNP.
對比圖④,由MN∥BD,MP∥BA.知面 MNP∥面BA1 D,故l⊥面MNP.
對比圖⑤,面MNP與面EFGHKR重合,故l⊥面MNP.
綜合得本題的答案為①④⑤.
解法2 如果記正方體對角線l所在的對角截面為.各圖可討論如下:
在圖①中,MN,NP在平面上的射影為同一直線,且與l垂直,故 l⊥面MNP.事實上,還可這樣考慮:l在上底面的射影是MP的垂線,故l⊥MP;l在左側面的射影是MN的垂線,故l⊥MN,從而l⊥面 MNP.
在圖②中,由MP⊥面,可證明MN在平面
上的射影不是l的垂線,故l不垂直于MN.從而l不垂直于面MNP.
在圖③中,點M在上的射影是l的中點,點P在
上的射影是上底面的內點,知MP在
上的射影不是l的垂線,得l不垂直于面 MNP.
在圖④中,平面垂直平分線段MN,故l⊥MN.又l在左側面的射影(即側面正方形的一條對角線)與MP垂直,從而l⊥MP,故l⊥面 MNP.
在圖⑤中,點N在平面上的射影是對角線l的中點,點M、P在平面
上的射影分別是上、下底面對角線的4分點,三個射影同在一條直線上,且l與這一直線垂直.從而l⊥面MNP.
至此,得①④⑤為本題答案.
科目:高中數學 來源: 題型:
【題目】某工廠產生的廢氣經過過濾后排放,排放時污染物的含量不得超過1%.已知在過濾過程中廢氣中的污染物數量P(單位:毫克/升)與過濾時間t(單位:小時)之間的函數關系為:P=P0e﹣kt , (k,P0均為正的常數).若在前5個小時的過濾過程中污染物被排除了90%.那么,至少還需( )時間過濾才可以排放.
A. 小時
B. 小時
C.5小時
D.10小時
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩支球隊進行總決賽,比賽采用七場四勝制,即若有一隊先勝四場,則此隊為總冠軍,比賽就此結束.因兩隊實力相當,每場比賽兩隊獲勝的可能性均為.據以往資料統計,第一場比賽可獲得門票收入40萬元,以后每場比賽門票收入比上一場增加10萬元.
(I)求總決賽中獲得門票總收入恰好為300萬元的概率;
(II)設總決賽中獲得門票總收入為X,求X的均值E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠用鮮牛奶在某臺設備上生產A,B兩種奶制品.生產1噸A產品需鮮牛奶2噸,使用設備1小時,獲利1 000元;生產1噸B產品需鮮牛奶1.5噸,使用設備1.5小時,獲利1 200元.要求每天B產品的產量不超過A產品產量的2倍,設備每天生產A,B兩種產品時間之和不超過12小時.假定每天可獲取的鮮牛奶數量W(單位:噸)是一個隨機變量,其分布列為
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
該廠每天根據獲取的鮮牛奶數量安排生產,使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機變量.
(I)求Z的分布列和均值;
(II)若每天可獲取的鮮牛奶數量相互獨立,求3天中至少有1天的最大獲利超過10 000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐,底面
為菱形,
,
,
平面
,
分別是
的中點。
(1)證明: ;
(2)若為
的中點時,
與平面
所成的角最大,且所成角的正切值為
,求點A到平面
的距離。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD,E分別為AP的中點.
(Ⅰ)求證:DE垂直于平面PAB;
(Ⅱ)設BC =,AB=2,求直線EB與平面ABD所成的角的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com