精英家教網 > 高中數學 > 題目詳情
已知函數
(1)當a=2時,求函數y=f(x)的圖象在x=0處的切線方程;
(2)判斷函數f(x)的單調性;
(3)求證:
(1)  ;(2) 參考解析;(3)參考解析

試題分析:(1)已知函數是一個 含對數與分式,以及復合函數,需要正確地對函數求導,因為函數在x=0處的切線方程,所以將x=0代入導函數,即可求出切線的斜率.再根據橫坐標為0,計算出縱坐標,根據點斜式即可寫出切線方程.
(2)需要判斷函數的單調性,要對函數求導,判斷導函數的值的正負,所以要根據參數的情況分類討論后作出判定.
(3)解法(一)令為特殊值,通過函數的單調性得到一個不等式成立,再將x轉化為數列中的n的相關的值,再利用一個不等式,從而得到結論.解法(二)根據結論構造函數,通過函數的最值證明恒成立,再將x轉化為n的表達式即可.
試題解析:(1)當時,,

,所以所求的切線的斜率為3.又∵,所以切點為. 故所求的切線方程為:.
(2)∵
. ①當時,∵,∴; 7分
②當時,
,得;由,得; 綜上,當時,函數單調遞增;
時,函數單調遞減,在上單調遞增.
(3)方法一:由(2)可知,當時,上單調遞增. ∴ 當時,,即. 令),則. 另一方面,∵,即,
∴ . ∴ ). 方法二:構造函數, ∴, ∴當時,;
∴函數單調遞增. ∴函數 ,即
,即
),則有
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)當時,求的最小值;
(2)在區間(1,2)內任取兩個實數p,q,且p≠q,若不等式>1恒成立,求實數a的取值范圍;
(3)求證:(其中)。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)求函數的極值;
(2)定義:若函數在區間上的取值范圍為,則稱區間為函數的“域同區間”.試問函數上是否存在“域同區間”?若存在,求出所有符合條件的“域同區間”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知a>0,函數f(x)=ax2-ln x.
(1)求f(x)的單調區間;
(2)當a=時,證明:方程f(x)=f 在區間(2,+∞)上有唯一解.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

記函數的導函數為,則 的值為     

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數f(x)=ax4+bx2+c滿足f′(1)=2,則f′(-1)等于(  )
A.-1B.- 2C.2D.0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

甲、乙二人平時跑步路程與時間的關系以及百米賽跑路程和時間的關
系分別如圖①、②所示.問:
 
(1)甲、乙二人平時跑步哪一個跑得快?
(2)甲、乙二人百米賽跑,快到終點時,誰跑得快(設Δss的增量)?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數f(x)=x3ax2ax,g(x)=2x2+4xc.
(1)試問函數f(x)能否在x=-1時取得極值?說明理由;
(2)若a=-1,當x∈[-3,4]時,函數f(x)與g(x)的圖象有兩個公共點,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直線m:y=kx+9,且f′(-1)=0.
(1)求a的值.
(2)是否存在k的值,使直線m既是曲線y=f(x)的切線,又是曲線y=g(x)的切線?如果存在,求出k的值;如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视