精英家教網 > 高中數學 > 題目詳情

【題目】如圖,組合體由半個圓錐和一個三棱錐構成,其中是圓錐底面圓心,是圓弧上一點,滿足是銳角,.

1)在平面內過點平面于點,并寫出作圖步驟,但不要求證明;

2)在(1)中,若中點,且,求直線與平面所成角的正弦值.

【答案】1)答案見解析;(2.

【解析】

1)①延長的延長線于點;②連接;③過點于點,可得點P.

2)若中點,則中點,又因為,所以,所以,從而.依題意,兩兩垂直,分別以,,,軸建立空間直角坐標系,運用空間向量線面角的求解方法可得解.

1)①延長的延長線于點;②連接;③過點于點.

2)若中點,則中點,又因為,所以,所以,從而.

依題意,兩兩垂直,分別以,,軸建立空間直角坐標系,

,

從而

設平面的法向量為,

,得.

,

所以直線與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】《高中數學課程標準》(2017版)規定了數學直觀想象學科的六大核心素養,為了比較甲、乙兩名高二學生的數學核心素養水平,現以六大素養為指標對二人進行了測驗,根據測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優),則下面敘述正確的是(注:雷達圖,又可稱為戴布拉圖、蜘蛛網圖,可用于對研究對象的多維分析)(

A.甲的直觀想象素養高于乙

B.甲的數學建模素養優于數據分析素養

C.乙的數學建模素養與數學運算素養一樣

D.乙的六大素養整體水平低于甲

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某單位的食堂中,食堂每天以10元/斤的價格購進米粉,然后以4.4元/碗的價格出售,每碗內含米粉0.2斤,如果當天賣不完,剩下的米粉以2元/斤的價格賣給養豬場.根據以往統計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.

(1)估計該天食堂利潤不少于760元的概率;

(2)在直方圖的需求量分組中,以區間中間值作為該區間的需求量,以需求量落入該區間的頻率作為需求量在該區間的概率,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數fx)=|xa|+|x+b|ab0.

1)當a1,b1時,求不等式fx)<3的解集;

2)若fx)的最小值為2,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在x軸上,長軸的兩個端點分別為、.短軸的兩個端點分別為.菱形的面積為,離心率.

(1)求橢圓的標準方程;

(2)設,經過點M作斜率不為0的直線交橢圓C于A、B兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐,底面為平行四邊形,且,點M的中點,,且平面平面.

1)求證:平面平面;

2)當直線與平面所成角的正切值為時,求四棱錐的體積及平面將四棱錐分成的兩部分的體積比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

(1)當時, 恒成立,求的范圍;

(2)若處的切線為,求的值.并證明當)時, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據試驗數據分別得到如下直方圖:

為事件:“乙離子殘留在體內的百分比不低于”,根據直方圖得到的估計值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數據用該組區間的中點值為代表).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某運動制衣品牌為了成衣尺寸更精準,現選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應的散點圖,并求得其回歸方程為,以下結論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關關系,

C. 可估計身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视