精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標中,圓,圓。

()在以O為極點,x軸正半軸為極軸的極坐標系中,分別寫出圓的極坐標方程,并求出圓的交點坐標(用極坐標表示);

()求圓的公共弦的參數方程。

【答案】12,.

【解析】試題分析:(1)利用進行互化即可;(2)由兩圓的公共點求出公共弦的普通方程,再利用直線的點與傾斜角得到參數方程.

解題思路:曲線的普通方程、參數方程、極坐標方程的互化,往往要利用或合理選參進行求解.

試題解析:(1)根據公式:

C1C2的極坐標方程分別為: ,

聯立: 解得:

C1與圓C2的交點極坐標分別為:

2)把(1)中兩圓交點極坐標化為直角坐標,

得:

此兩圓公共弦的普通方程為:

此弦所在直線過(1,0)點,傾斜角為90°

所求兩圓的公共弦的參數方程為:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣4|,g(x)=a|x|,a∈R.
(Ⅰ)當a=2時,解關于x的不等式f(x)>2g(x)+1;
(Ⅱ)若不等式f(x)≥g(x)﹣4對任意x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ,則滿足f(x)+f(x﹣ )>1的x的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在五面體ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD=

(1)求證:PN∥AB;

(2)求NC與平面BDN所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是 ( )

A. 的充分不必要條件;

B. 如果命題與命題pq都是真命題,那么命題一定是真命題.

C. 若命題p,則;

D. 命題,則的否命題是:,則

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖四面體ABCD中,△ABC是正三角形,AD=CD.(12分)
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為 . (參考數據:sin15°=0.2588,sin7.5°=0.1305)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則它的體積為(
A.48
B.16
C.32
D.16

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱臺ABC﹣A1B1C1中,D,E分別是AB,AC的中點,B1E⊥平面ABC,△AB1C是等邊三角形,AB=2A1B1,AC=2BC,∠ACB=90°.

(1)證明:B1C∥平面A1DE;

(2)求二面角A﹣BB1﹣C的正弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视