【題目】如圖,正三棱錐,已知
,
(1)求此三棱錐內切球的半徑.
(2)若是側面
上一點,試在面
上過點
畫一條與棱
垂直的線段,并說明理由.
【答案】(1)半徑為 ;(2) 過
作線段
平行于
,則
為所求,證明見解析.
【解析】試題分析; (1)過作
平面
,垂足為
,由正三棱錐的性質可得
為底面正三角形的中心,,求解三角形可得
,進一步得到
,求得
,再由棱錐體積公式求得正三棱錐
的體積,最后
可求此三棱錐內切球的半徑
;
(2)由(1)結合線面垂直的判定可得 ,得到
,過
作線段
平行于
,則
為所求.
試題解析;(1)如圖,過作
平面
,垂足為
,
∵為正三棱錐,∴
為底面正三角形的中心,
連接并延長交
于
,
則,且
,
∴,則
.
∴
;
(2)過作線段
平行于
,則
為所求.
理由:∵為正三棱錐,
過作
平面
,垂足為
,
∴為底面正三角形的中心,
則,
,
∴平面
,則
,
∵ ,
∴.
科目:高中數學 來源: 題型:
【題目】已知某漁船在漁港O的南偏東60°方向,距離漁港約160海里的B處出現險情,此時在漁港的正上方恰好有一架海事巡邏飛機A接到漁船的求救信號,海事巡邏飛機迅速將情況通知了在C處的漁政船并要求其迅速趕往出事地點施救.若海事巡邏飛機測得漁船B的俯角為68.20°,測得漁政船C的俯角為63.43°,且漁政船位于漁船的北偏東60°方向上.
(Ⅰ)計算漁政船C與漁港O的距離;
(Ⅱ)若漁政船以每小時25海里的速度直線行駛,能否在3小時內趕到出事地點?
(參考數據:sin68.20°≈0.93,tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00, ≈3.62,
≈3.61)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】宋元時期杰出的數學家朱世杰在其數學巨著《四元玉鑒》卷中“茭草形段”第一個問題“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.問底子(每層三角形邊茭草束數,等價于層數)幾何?”中探討了“垛枳術”中的落一形垛(“落一形”即是指頂上1束,下一層3束,再下一層6束,…,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層茭草束數),則本問題中三角垛底層茭草總束數為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖甲所示, 是梯形
的高,
,
,
,先將梯形
沿
折起如圖乙所示的四棱錐
,使得
,點
是線段
上一動點.
(1)證明: ;
(2)當時,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐中,
平面
是
的中點,
是
上的點且
為
邊
上的高.
(1)證明: 平面
;
(2)若,求三棱錐
的體積;
(3)在線段上是否存在這樣一點
,使得
平面
?若存在,說出
點的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設拋物線的準線
與
軸交于橢圓
的右焦點
為
的左焦點.橢圓的離心率為
,拋物線
與橢圓
交于
軸上方一點
,連接
并延長其交
于點
,
為
上一動點,且在
之間移動.
(1)當取最小值時,求
和
的方程;
(2)若的邊長恰好是三個連續的自然數,當
面積取最大值時,求面積最大值以及此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定點,定直線
:
,動圓
過點
,且與直線
相切.
(Ⅰ)求動圓的圓心軌跡
的方程;
(Ⅱ)過點的直線與曲線
相交于
,
兩點,分別過點
,
作曲線
的切線
,
,兩條切線相交于點
,求
外接圓面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com