【題目】如圖,某幾何體中,四邊形
是邊長為
的正方形,
是直角梯形,
是直角,
,
是以
為直角頂點的等腰直角三角形,
.
(1)求證:平面平面
;
(2)求平面與平面
所成的銳二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析: 因為
,
,可證
平面
,從而證明平面
平面
;
由
得到
,又因為四邊形
為正方形,所以
又
,以
為原點,
,
,
所在直線分別為
軸,
軸,
軸,建立空間直角坐標系
,求出平面
與平面
的法向量,將求二面角問題轉化為求兩向量夾角。
解析:(1)因為,
,
,
平面
,
所以平面
,
又平面
,
所以平面平面
.
(2)因為平面平面
,平面
平面
,
,
平面
,
所以平面
.又
平面
,故
.
而四邊形為正方形,所以
又
,
以為原點,
,
,
所在直線分別為
軸,
軸,
軸,建立空間直角坐標系
.
依題意易知: ,
,
,
,
,
設平面的一個法向量為
,
則,即
,令
,則
,所以
.
設平面的一個法向量為
,
則,即
,令
,則
,所以
.
設平面與平面
所成的銳二面角的平面角為
,
則.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線:
經過伸縮變換
后得到曲線
.以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求出曲線、
的參數方程;
(Ⅱ)若、
分別是曲線
、
上的動點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某藝術品公司欲生產一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內接等腰三角形
繞底邊
上的高所在直線
旋轉180°而成,如圖2.已知圓
的半徑為
,設
,圓錐的側面積為
.
(1)求關于
的函數關系式;
(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求
取得最大值時腰
的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P–ABCD中,底面ABCD是邊長為6的正方形,PD平面ABCD,PD=8.
(1) 求PB與平面ABCD所成角的大小;
(2) 求異面直線PB與DC所成角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在①;②
這兩個條件中任選-一個,補充在下面問題中,然后解答補充完整的題.
在中,角
的對邊分別為
,已知 ,
.
(1)求;
(2)如圖,為邊
上一點,
,求
的面積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的離心率為
,長半軸長為短軸長的b倍,A,B分別為橢圓C的上、下頂點,點
.
求橢圓C的方程;
若直線MA,MB與橢圓C的另一交點分別為P,Q,證明:直線PQ過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一款擊鼓小游戲的規則如下:每輪游戲都需擊鼓三次,每次擊鼓要么出現一次音樂,要么不出現音樂;每輪游戲擊鼓三次后,出現一次音樂獲得10分,出現兩次音樂獲得20分,出現三次音樂獲得100分,沒有出現音樂則扣除200分(即獲得-200分).設每次擊鼓出現音樂的概率為,且各次擊鼓是否出現音樂相互獨立.
(1)玩三輪游戲,至少有一輪出現音樂的概率是多少?
(2)設每輪游戲獲得的分數為X,求X的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com