【題目】設函數f(x)=emx+x2-mx.
(1)證明:f(x)在(-∞,0)上單調遞減,在(0,+∞)上單調遞增;
(2)若對于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范圍.
【答案】(1) 見解析(2) [-1,1].
【解析】試題分析:(1)利用說明函數為增函數,利用
說明函數為減函數,要注意參數
的討論;(2)由(1)知,對任意的
,
在
單調遞減,在
單調遞增,則恒成立問題轉化為最大值和最小值問題.從而求得
的取值范圍.
試題解析:(1)證明:∵
∴.
若,則當
時,
,
,
當時,
,
若,則當
時,
,
當時,
,
∴函數在
上單調遞減,在
上單調遞增.
(2)由(1)知,對任意的,
在
上單調遞減,在
上單調遞增,故
在
處取得最小值.所以對于任意
,
的充要條件是
即
①
設函數,則
當時,
;當
時,
∴在
上單調遞減,在
上單調遞增.
又∵,
∴當時,
當時,
,
,即①式成立;
當時,
,即
;
當時,
,即
綜上, 的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+ex- (x<0)與g(x)=x2+ln(x+a)圖象上存在關于y軸對稱的點,則a的取值范圍是( )
A. (-∞,) B. (-∞,
)
C. (-,
) D. (-
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中,
,
,
,
是
的中點,
是線段
上一個動點,且
,如圖所示,沿
將
翻折至
,使得平面
平面
.
(1)當時,證明:
平面
;
(2)是否存在,使得三棱錐
的體積是
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1上任意一點M到直線l:y=4的距離是它到點F(0,1)距離的2倍;曲線C2是以原點為頂點,F為焦點的拋物線.
(1)求C1,C2的方程;
(2)設過點F的直線與曲線C2相交于A,B兩點,分別以A,B為切點引曲線C2的兩條切線l1,l2,設l1,l2相交于點P,連接PF的直線交曲線C1于C,D兩點,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“過大年,吃水餃”是我國不少地方過春節的一大習俗,2018年春節前夕, 市某質檢部門隨機抽取了100包某種品牌的速凍水餃,檢測其某項質量指標.
(1)求所抽取的100包速凍水餃該項質量指標值的樣本平均數(同一組中的數據用該組區間的中點值作代表);
(2)①由直方圖可以認為,速凍水餃的該項質量指標值服從正態分布
,利用該正態分布,求
落在
內的概率;
②將頻率視為概率,若某人從某超市購買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質量指標值位于內的包數為
,求
的分布列和數學期望.
附:①計算得所抽查的這100包速凍水餃的質量指標的標準差為;
②若,則
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,圓
的圓心為
.已知點
,且
為圓
上的動點,線段
的中垂線交
于點
.
(Ⅰ)求點的軌跡方程;
(Ⅱ)設點的軌跡為曲線
,拋物線
:
的焦點為
.
,
是過點
互相垂直的兩條直線,直線
與曲線
交于
,
兩點,直線
與曲線
交于
,
兩點,求四邊形
面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com