【題目】在直角坐標系中,直線
經過點
,其傾斜角為
.以原點
為極點,以
軸非負半軸為極軸,與直角坐標系
取相同的長度單位,建立極坐標系.設曲線
的極坐標方程為
.
(1)寫出直線的參數方程,若直線
與曲線
有公共點,求
的取值范圍.
(2)設為曲線
上任意一點,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】淘汰落后產能,對生產設備進行升級改造是企業生存發展的重要前提.某企業今年對舊生產設備的一半進行了升級,剩下的一半在今后的兩年內完成升級.為了分析新舊設備的生產質量,從新舊設備生產的產品中各抽取了件作為樣本,對最重要的一項質量指標進行檢測,該項質量指標值落在
內的產品為合格品,否則為不合格品.檢測數據如下:
表1:日設備生產的產品樣本頻數分布表
質量指標 | ||||||
頻數 | 3 | 16 | 44 | 12 | 22 | 3 |
表2:新設備生產的產品樣本頻數分布表
質量指標 | ||||||
頻數 | 1 | 20 | 52 | 16 | 10 | 1 |
(1)根據表1和表2提供的數據,試從產品合格率的角度對新舊設備的優劣進行比較;
(2)面向市場銷售時,只有合格品才能銷售,這時需要對合格品的品質進行等級細分,質量指標落在內的定為優質品,質量指標落在
或
內的定為一等品,其它的合格品定為二等品.完成下面的
列聯表,并判斷是否有
的把握認為該企業生產的這種產品的質量指標值與新舊設備有關;
舊設備 | 新設備 | 合計 | |
優質品及一等品 | |||
二等品及不合格品 | |||
合計 | /span> |
(3)優質品每件售價元,一等品每件售價
元,二等品每件售價
元根據表1和表2中的數據,用該組樣本中優質品、一等品、二等品各自在合格品中的頻率代替從合格產品中抽到一件相應等級產品的概率.現有一名顧客隨機購買兩件產品,設其支付的費用為
(單位:元),求
的分布列和數學期望(結果保留整數).
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過點P(-4,0)的動直線l與拋物線相交于D、E兩點,已知當l的斜率為
時,
.
(1)求拋物線C的方程;
(2)設的中垂線在
軸上的截距為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
(
),過點
且斜率為1的直線
與拋物線
交于
,
兩點,且
為
的中點.
(1)求拋物線的方程;
(2)設直線與
軸交點為
,若過
的直線
與拋物線
交于
,
兩點,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:
①將一組數據中的每一個數據都加上或減去同一個常數后,方差不變;
②設有一個線性回歸方程,變量x增加1個單位時,y平均增加5個單位;
③設具有相關關系的兩個變量x,y的相關系數為r,則|r|越接近于0,x和y之間的線性相關程度越強;
④在一個2×2列聯表中,由計算得K2的值,則K2的值越大,判斷兩個變量間有關聯的把握就越大.
以上錯誤結論的個數為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題:
①對立事件一定是互斥事件;②若A,B為兩個隨機事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.
其中正確命題的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
(
為參數),以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系,直線
的極坐標方程為:
.
(1)求直線和曲線
的直角坐標方程;
(2),直線
和曲線
交于
、
兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com