【題目】某學生參加4門學科的學業水平測試,每門得等級的概率都是
,該學生各學科等級成績彼此獨立.規定:有一門學科獲
等級加1分,有兩門學科獲
等級加2分,有三門學科獲
等級加3分,四門學科全獲
等級則加5分,記
表示該生的加分數,
表示該生獲
等級的學科門數與未獲
等級學科門數的差的絕對值.
(1)求的數學期望;
(2)求的分布列.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點
的極坐標為
,直線
的極坐標方程為
,且點
在直線
上.
(1)求的值及直線
的直角坐標方程;
(2)圓的極坐標方程為
,試判斷直線
與圓
的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列同時滿足:①對于任意的正整數
,
恒成立;②對于給定的正整數
,
對于任意的正整數
恒成立,則稱數列
是“
數列”.
(1)已知判斷數列
是否為“
數列”,并說明理由;
(2)已知數列是“
數列”,且存在整數
,使得
,
,
,
成等差數列,證明:
是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數為定義在
上的奇函數.
(Ⅰ)求的解析式;
(Ⅱ)判斷在定義域
上的單調性,并用函數單調性定義給予證明;
(Ⅲ)若關于的方程
在
上有解,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】了解某市今年初二年級男生的身體素質狀況,從該市初二年級男生中抽取了一部分學生進行“擲實心球”的項目測試.成績低于6米為不合格,成績在6至8米(含6米不含8米)的為及格,成績在8米至12米(含8米和12米,假定該市初二學生擲實心球均不超過12米)為優秀.把獲得的所有數據,分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學生的成績在10米到12米之間.
(Ⅰ)求實數的值及參加“擲實心球”項目測試的人數;
(Ⅱ)根據此次測試成績的結果,試估計從該市初二年級男生中任意選取一人,“擲實心球”成績為優秀的概率;
(Ⅲ)若從此次測試成績最好和最差的兩組男生中隨機抽取2 名學生再進行其它項目的測試,求所抽取的2名學生來自不同組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市公交公司為了鼓勵廣大市民綠色出行,計劃在某個地段增設一個起點站,為了研究車輛發車的間隔時間與乘客等候人數
之間的關系,經過抽樣調查五個不同時段的情形,統計得到如下數據:
間隔時間( | 8 | 10 | 12 | 14 | 16 |
等候人數( | 16 | 19 | 23 | 26 | 29 |
調查小組先從這5組數據中選取其中的4組數據求得線性回歸方程,再用剩下的1組數據進行檢驗,檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數,再求
與實際等候人數
的差,若差值的絕對值不超過1,則稱所求的回歸方程是“理想回歸方程”.
(1)若選取的是前4組數據,求關于
的線性回歸方程
,并判斷所求方程是否是“理想回歸方程”;
(2)為了使等候的乘客不超過38人,試用所求方程估計間隔時間最多可以設為多少分鐘?
參考公式:用最小二乘法求線性回歸方程的系數公式:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高二期中考試后,教務處計劃對全年級數學成績進行統計分析,從男、女生中各隨機抽取100名學生,分別制成了男生和女生數學成績的頻率分布直方圖,如圖所示.
(1)若所得分數大于等于80分認定為優秀,求男、女生優秀人數各有多少人?
(2)在(1)中的優秀學生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了確定下一年度投入某種產品的宣傳費用,需了解年宣傳費(單位:萬元)對年銷量
(單位:噸)和年利潤(單位:萬元)的影響.對近6年宣傳費
和年銷量
的數據做了初步統計,得到如下數據:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣傳費x(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量y(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經電腦模擬,發現年宣傳費(萬元)與年銷售量
(噸)之間近似滿足關系式
即
,對上述數據作了初步處理,得到相關的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)從表中所給出的6年年銷售量數據中任選2年做年銷售量的調研,求所選數據中至多有一年年銷售量低于20噸的概率.
(Ⅱ)根據所給數據,求關于
的回歸方程;
(Ⅲ)若生產該產品的固定成本為200(萬元),且每生產1(噸)產品的生產成本為20(萬元)(總成本=固定成本+生產成本+年宣傳費),銷售收入為(萬元),假定該產品產銷平衡(即生產的產品都能賣掉),2019年該公司計劃投入
萬元宣傳費,你認為該決策合理嗎?請說明理由.(其中
為自然對數的底數,
)
附:對于一組數據,其回歸直線
中的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com